Protein & Cell

, Volume 2, Issue 10, pp 845–854 | Cite as

SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion

  • Xiaolei Liu
  • Biyan Duan
  • Zhaokang Cheng
  • Xiaohua Jia
  • Lina Mao
  • Hao Fu
  • Yongzhe Che
  • Lailiang Ou
  • Lin Liu
  • Deling Kong
Research Article

Abstract

Bone marrow mesenchymal stem cells (MSCs) are considered as a promising cell source to treat the acute myocardial infarction. However, over 90% of the stem cells usually die in the first three days of transplantation. Survival potential, migration ability and paracrine capacity have been considered as the most important three factors for cell transplantation in the ischemic cardiac treatment. We hypothesized that stromal-derived factor-1 (SDF-1)/CXCR4 axis plays a critical role in the regulation of these processes. In this study, apoptosis was induced by exposure of MSCs to H2O2 for 2 h. After re-oxygenation, the SDF-1 pretreated MSCs demonstrated a significant increase in survival and proliferation. SDF-1 pretreatment also enhanced the migration and increased the secretion of pro-survival and angiogenic cytokines including basic fibroblast growth factor and vascular endothelial growth factor. Western blot and RT-PCR demonstrated that SDF-1 pretreatment significantly activated the pro-survival Akt and Erk signaling pathways and up-regulated Bcl-2/Bax ratio. These protective effects were partially inhibited by AMD3100, an antagonist of CXCR4.We conclude that the SDF-1/CXCR4 axis is critical for MSC survival, migration and cytokine secretion.

Keywords

SDF-1/CXCR4 bone marrow mesenchymal stem cells survival migration secretion 

References

  1. Abbott, J.D., Huang, Y., Liu, D., Hickey, R., Krause, D.S., and Giordano, F.J. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110, 3300–3305.CrossRefPubMedGoogle Scholar
  2. Amado, L.C., Saliaris, A.P., Schuleri, K.H., St John, M., Xie, J.S., Cattaneo, S., Durand, D.J., Fitton, T., Kuang, J.Q., Stewart, G., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102, 11474–11479.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Askari, A.T., Unzek, S., Popovic, Z.B., Goldman, C.K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S.G., Thomas, J.D., DiCorleto, P. E., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703.CrossRefPubMedGoogle Scholar
  4. Broxmeyer, H.E., Kohli, L., Kim, C.H., Lee, Y., Mantel, C., Cooper, S., Hangoc, G., Shaheen, M., Li, X., and Clapp, D.W. (2003). Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol 73, 630–638.CrossRefPubMedGoogle Scholar
  5. Cheng, Z., Liu, X., Ou, L., Zhou, X., Liu, Y., Jia, X., Zhang, J., Li, Y., and Kong, D. (2008a). Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovasc Drugs Ther 22, 363–371.CrossRefPubMedGoogle Scholar
  6. Cheng, Z., Ou, L., Liu, Y., Liu, X., Li, F., Sun, B., Che, Y., Kong, D., Yu, Y., and Steinhoff, G. (2008b). Granulocyte colony-stimulating factor exacerbates cardiac fibrosis after myocardial infarction in a rat model of permanent occlusion. Cardiovasc Res 80, 425–434.CrossRefPubMedGoogle Scholar
  7. Cheng, Z., Ou, L., Zhou, X., Li, F., Jia, X., Zhang, Y., Liu, X., Li, Y., Ward, C.A., Melo, L.G., et al. (2008c). Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16, 571–579.CrossRefPubMedGoogle Scholar
  8. Choi, S.C., Kim, S.J., Choi, J.H., Park, C.Y., Shim, W.J., and Lim, D.S. (2008). Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 17, 725–736.CrossRefPubMedGoogle Scholar
  9. Dai, W., Hale, S.L., Martin, B.J., Kuang, J.Q., Dow, J.S., Wold, L.E., and Kloner, R.A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and longterm effects. Circulation 112, 214–223.CrossRefPubMedGoogle Scholar
  10. Dziembowska, M., Tham, T.N., Lau, P., Vitry, S., Lazarini, F., and Dubois-Dalcq, M. (2005). A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50, 258–269.CrossRefPubMedGoogle Scholar
  11. Fazel, S.S., Angoulvant, D., Butany, J., Weisel, R.D., and Li, R.K. (2008). Mesenchymal stem cells engineered to overexpress stem cell factor improve cardiac function but have malignant potential. J Thorac Cardiovasc Surg 136, 1388–1389.CrossRefPubMedGoogle Scholar
  12. Fischer, K.M., Cottage, C.T., Wu, W., Din, S., Gude, N.A., Avitabile, D., Quijada, P., Collins, B.L., Fransioli, J., and Sussman, M.A. (2009). Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation 120, 2077–2087.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Gupta, K., Kshirsagar, S., Li, W., Gui, L., Ramakrishnan, S., Gupta, P., Law, P.Y., and Hebbel, R.P. (1999). VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 247, 495–504.CrossRefPubMedGoogle Scholar
  14. Haider, H.Kh., and Ashraf, M. (2008). Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 45, 554–566.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Hu, X., Dai, S., Wu, W.J., Tan, W., Zhu, X., Mu, J., Guo, Y., Bolli, R., and Rokosh, G. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation 116, 654–663.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Jaleel, M.A., Tsai, A.C., Sarkar, S., Freedman, P.V., and Rubin, L.P. (2004). Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cell survival. Mol Hum Reprod 10, 901–909.CrossRefPubMedGoogle Scholar
  17. Joo, E.K., Broxmeyer, H.E., Kwon, H.J., Kang, H.B., Kim, J.S., Lim, J. S., Choe, Y.K., Choe, I.S., Myung, P.K., and Lee, Y. (2004). Enhancement of cell survival by stromal cell-derived factor-1/CXCL12 involves activation of CREB and induction of Mcl-1 and c-Fos in factor-dependent human cell line MO7e. Stem Cells Dev 13, 563–570.CrossRefPubMedGoogle Scholar
  18. Jürgensmeier, J.M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J.C. (1998). Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A 95, 4997–5002.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kinnaird, T., Stabile, E., Burnett, M.S., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004a). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94, 678–685.CrossRefPubMedGoogle Scholar
  20. Kinnaird, T., Stabile, E., Burnett, M.S., Shou, M., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004b). Local delivery of marrowderived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549.CrossRefPubMedGoogle Scholar
  21. Kucia, M., Jankowski, K., Reca, R., Wysoczynski, M., Bandura, L., Allendorf, D.J., Zhang, J., Ratajczak, J., and Ratajczak, M.Z. (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35, 233–245.CrossRefPubMedGoogle Scholar
  22. Kumar, D., and Jugdutt, B.I. (2003). Apoptosis and oxidants in the heart. J Lab Clin Med 142, 288–297.CrossRefPubMedGoogle Scholar
  23. Lataillade, J.J., Clay, D., Bourin, P., Hérodin, F., Dupuy, C., Jasmin, C., and Le Bousse-Kerdilès, M.C. (2002). Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 99, 1117–1129.CrossRefPubMedGoogle Scholar
  24. Li, W., Ma, N., Ong, L.L., Nesselmann, C., Klopsch, C., Ladilov, Y., Furlani, D., Piechaczek, C., Moebius, J.M., Lützow, K., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25, 2118–2127.CrossRefPubMedGoogle Scholar
  25. Mangi, A.A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J.S., and Dzau, V.J. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9, 1195–1201.CrossRefPubMedGoogle Scholar
  26. Menasché, P. (2008). Current status and future prospects for cell transplantation to prevent congestive heart failure. Semin Thorac Cardiovasc Surg 20, 131–137.CrossRefPubMedGoogle Scholar
  27. Misao, J., Hayakawa, Y., Ohno, M., Kato, S., Fujiwara, T., and Fujiwara, H. (1996). Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94, 1506–1512.CrossRefPubMedGoogle Scholar
  28. Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., Fujii, T., Uematsu, M., Ohgushi, H., Yamagishi, M., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112, 1128–1135.CrossRefPubMedGoogle Scholar
  29. Pasha, Z., Wang, Y., Sheikh, R., Zhang, D., Zhao, T., and Ashraf, M. (2008). Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77, 134–142.CrossRefPubMedGoogle Scholar
  30. Peters, R., Leyvraz, S., and Perey, L. (1998). Apoptotic regulation in primitive hematopoietic precursors. Blood 92, 2041–2052.PubMedGoogle Scholar
  31. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.CrossRefPubMedGoogle Scholar
  32. Reed, J.C. (1998). Bcl-2 family proteins. Oncogene 17, 3225–3236.CrossRefPubMedGoogle Scholar
  33. Rochefort, G.Y., Delorme, B., Lopez, A., Hérault, O., Bonnet, P., Charbord, P., Eder, V., and Domenech, J. (2006). Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24, 2202–2208.CrossRefPubMedGoogle Scholar
  34. Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S.K., Doni, A., Rapisarda, A., Bernasconi, S., Saccani, S., Nebuloni, M., Vago, L., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198, 1391–1402.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J., and Kessler, P.D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98.CrossRefPubMedGoogle Scholar
  36. Trivedi, P.S., Tray, N.J., Nguyen, T.D., Nigam, N., and Gallicano, G.I. (2010). Mesenchymal Stem Cell Therapy for Treatment of Cardiovascular Disease: Helping people sooner or later. Stem Cells Dev 19, 1109–1120.CrossRefPubMedGoogle Scholar
  37. Xie, C.Q., Zhang, J., Xiao, Y., Zhang, L., Mou, Y., Liu, X., Akinbami, M., Cui, T., and Chen, Y.E. (2007). Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model. Stem Cells Dev 16, 25–29.CrossRefPubMedGoogle Scholar
  38. Xu, R., Chen, J., Cong, X., Hu, S., and Chen, X. (2008). Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. J Cell Biochem 103, 256–269.CrossRefPubMedGoogle Scholar
  39. Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Jones, D.P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132.CrossRefPubMedGoogle Scholar
  40. Zhang, J., and Cai, H. (2010). Netrin-1 prevents ischemia/reperfusion-induced myocardial infarction via a DCC/ERK1/2/eNOS (s1177)/NO/DCC feed-forward mechanism. J Mol Cell Cardiol 48, 1060–1070.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Zhang, M., Mal, N., Kiedrowski, M., Chacko, M., Askari, A.T., Popovic, Z.B., Koc, O.N., and Penn, M.S. (2007). SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J 21, 3197–3207.CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaolei Liu
    • 1
  • Biyan Duan
    • 2
  • Zhaokang Cheng
    • 1
  • Xiaohua Jia
    • 1
  • Lina Mao
    • 1
    • 4
  • Hao Fu
    • 1
  • Yongzhe Che
    • 3
  • Lailiang Ou
    • 1
  • Lin Liu
    • 1
  • Deling Kong
    • 1
  1. 1.The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life ScienceNankai UniversityTianjinChina
  2. 2.College of PharmacyNankai UniversityTianjinChina
  3. 3.School of MedicineNankai UniversityTianjinChina
  4. 4.Oklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations