Advertisement

Protein & Cell

, Volume 2, Issue 7, pp 585–599 | Cite as

Selective expansion and enhanced anti-tumor effect of antigen-specific CD4+ T cells by retrovirus-mediated IL-15 expression

  • Jizhou Lv
  • Ning Tao
  • Hao Wu
  • Xiaoman Liu
  • Xia Xu
  • Yingxin Xu
  • Zhihai QinEmail author
Research Article
  • 84 Downloads

Abstract

Mounting evidence has demonstrated that CD4+ T cells play an important role in anti-tumor immune responses. Thus, adoptive transfer of these cells may have great potential for anti-cancer therapy. However, due to the difficulty to generate sufficient tumor-specific CD4+ T cells, the use of CD4+ T cells in tumor therapy is limited. It has been found that IL-15 transfection enhances the proliferation and anti-tumor activity of tumor-specific CD8+ T cells, but the effect of IL-15 transfection on CD4+ T cells remains unknown. Here, the effects of retrovirusmediated IL-15 expression in Ova-specific CD4+ T cells from Do11.10 mice were evaluated and it was discovered that IL-15 transfected CD4+ T cells expressed both soluble and membrane-bound IL-15. Retrovirusmediated IL-15 expression led to a selective expansion of antigen-specific CD4+ T cells by inhibiting their apoptosis. In vivo IL-15 transfected CD4+ T cells were more effective in suppressing tumor growth than control retroviral vector transfected ones. To ensure the safety of the method, the employment of thymidine kinase gene made it possible to eliminate these transgenic CD4+ T cells following ganciclovir treatment. Together, we show that IL-15 transfection induced a selective expansion of antigen-specific CD4+ T cells ex vivo and enhanced their tumor-suppression effects in vivo. This has an important significance for improving the efficacy of adoptive T cell therapy.

Keywords

CD4+ T cells retrovirus vector IL-15 tumor therapy 

References

  1. Abad, J.D., Wrzensinski, C., Overwijk, W., De Witte, M.A., Jorritsma, A., Hsu, C., Gattinoni, L., Cohen, C.J., Paulos, C.M., Palmer, D.C., et al. (2008). T-cell receptor gene therapy of established tumors in a murine melanoma model. J Immunother 31, 1–6.CrossRefGoogle Scholar
  2. Bergamaschi, C., Rosati, M., Jalah, R., Valentin, A., Kulkarni, V., Alicea, C., Zhang, G.M., Patel, V., Felber, B.K., and Pavlakis, G.N. (2008). Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem 283, 4189–4199.CrossRefGoogle Scholar
  3. Black, M.E., Newcomb, T.G., Wilson, H.M., and Loeb, L.A. (1996). Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A 93, 3525–3529.CrossRefGoogle Scholar
  4. Burkett, P.R., Koka, R., Chien, M., Chai, S., Boone, D.L., and Ma, A. (2004). Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8 + T cell homeostasis. J Exp Med 200, 825–834.CrossRefGoogle Scholar
  5. Cohen, P.A., Peng, L., Plautz, G.E., Kim, J.A., Weng, D.E., and Shu, S. (2000). CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection. Crit Rev Immunol 20, 17–56.CrossRefGoogle Scholar
  6. Cosman, D., Kumaki, S., Ahdieh, M., Eisenman, J., Grabstein, K.H., Paxton, R., DuBose, R., Friend, D., Park, L.S., Anderson, D., et al. (1995). Interleukin 15 and its receptor. Ciba Found Symp 195, 221–229, discussion 229–233.Google Scholar
  7. Cox, A.L., Skipper, J., Chen, Y., Henderson, R.A., Darrow, T.L., Shabanowitz, J., Engelhard, V.H., Hunt, D.F., and Slingluff, C.L. Jr. (1994). Identification of a peptide recognized by five melanomaspecific human cytotoxic T cell lines. Science 264, 716–719.CrossRefGoogle Scholar
  8. Culver, K.W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E.H., and Blaese, R.M. (1992). In vivo gene transfer with retroviral vectorproducer cells for treatment of experimental brain tumors. Science 256, 1550–1552.CrossRefGoogle Scholar
  9. Disis, M.L., Gooley, T.A., Rinn, K., Davis, D., Piepkorn, M., Cheever, M.A., Knutson, K.L., and Schiffman, K. (2002). Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20, 2624–2632.CrossRefGoogle Scholar
  10. Dudley, M.E., Wunderlich, J.R., Robbins, P.F., Yang, J.C., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Sherry, R., Restifo, N.P., Hubicki, A.M., et al. (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854.CrossRefGoogle Scholar
  11. Dunbar, P.R., Chen, J.L., Chao, D., Rust, N., Teisserenc, H., Ogg, G. S., Romero, P., Weynants, P., and Cerundolo, V. (1999). Cutting edge: rapid cloning of tumor-specific CTL suitable for adoptive immunotherapy of melanoma. J Immunol 162, 6959–6962.Google Scholar
  12. Gattinoni, L., Powell, D.J. Jr, Rosenberg, S.A., and Restifo, N.P. (2006). Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6, 383–393.CrossRefGoogle Scholar
  13. Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M.P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R., Morillon, E., et al. (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419.CrossRefGoogle Scholar
  14. Judge, A.D., Zhang, X., Fujii, H., Surh, C.D., and Sprent, J. (2002). Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 196, 935–946.CrossRefGoogle Scholar
  15. June, C.H. (2007a). Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117, 1466–1476.CrossRefGoogle Scholar
  16. June, C.H. (2007b). Principles of adoptive T cell cancer therapy. J Clin Invest 117, 1204–1212.CrossRefGoogle Scholar
  17. Klebanoff, C.A., Finkelstein, S.E., Surman, D.R., Lichtman, M.K., Gattinoni, L., Theoret, M.R., Grewal, N., Spiess, P.J., Antony, P.A., Palmer, D.C., et al. (2004). IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8 + T cells. Proc Natl Acad Sci U S A 101, 1969–1974.CrossRefGoogle Scholar
  18. Ladekarl, M., Agger, R., Fleischer, C.C., Hokland, M., Hulgaard, E.F., Kirkin, A., von der Maase, H., Petersen, M.S., Rytter, C., Zeuthen, J., et al. (2004). Detection of circulating tumor lysate-reactive CD4+ T cells in melanoma patients. Cancer Immunol Immunother 53, 560–566.CrossRefGoogle Scholar
  19. Leen, A.M., Rooney, C.M., and Foster, A.E. (2007). Improving T cell therapy for cancer. Annu Rev Immunol 25, 243–265.CrossRefGoogle Scholar
  20. Li, Y., Zhi, W., Wareski, P., and Weng, N.P. (2005). IL-15 activates telomerase and minimizes telomere loss and may preserve the replicative life span of memory CD8 + T cells in vitro. J Immunol 174, 4019–4024.CrossRefGoogle Scholar
  21. Marks-Konczalik, J., Dubois, S., Losi, J.M., Sabzevari, H., Yamada, N., Feigenbaum, L., Waldmann, T.A., and Tagaya, Y. (2000). IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A 97, 11445–11450.CrossRefGoogle Scholar
  22. McGill, J., Van Rooijen, N., and Legge, K.L. (2010). IL-15 transpresentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection. J Exp Med 207, 521–534.CrossRefGoogle Scholar
  23. Muranski, P., and Restifo, N.P. (2009). Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol 21, 200–208.CrossRefGoogle Scholar
  24. Phan, G.Q., Yang, J.C., Sherry, R.M., Hwu, P., Topalian, S.L., Schwartzentruber, D.J., Restifo, N.P., Haworth, L.R., Seipp, C.A., Freezer, L.J., et al. (2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100, 8372–8377.CrossRefGoogle Scholar
  25. Qin, Z., and Blankenstein, T. (2000). CD4+ T cell—mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 12, 677–686.CrossRefGoogle Scholar
  26. Quezada, S.A., Simpson, T.R., Peggs, K.S., Merghoub, T., Vider, J., Fan, X., Blasberg, R., Yagita, H., Muranski, P., Antony, P.A., et al. (2010). Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207, 637–650.CrossRefGoogle Scholar
  27. Quintarelli, C., Vera, J.F., Savoldo, B., Giordano Attianese, G.M., Pule, M., Foster, A.E., Heslop, H.E., Rooney, C.M., Brenner, M.K., and Dotti, G. (2007). Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110, 2793–2802.CrossRefGoogle Scholar
  28. Radfar, S., Wang, Y., and Khong, H.T. (2009). Activated CD4+ T cells dramatically enhance chemotherapeutic tumor responses in vitro and in vivo. J Immunol 183, 6800–6807.CrossRefGoogle Scholar
  29. Rainov, N.G. (2000). A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11, 2389–2401.CrossRefGoogle Scholar
  30. Schumacher, T.N. (2002). T-cell-receptor gene therapy. Nat Rev Immunol 2, 512–519.CrossRefGoogle Scholar
  31. Schumacher, T.N., and Restifo, N.P. (2009). Adoptive T cell therapy of cancer. Curr Opin Immunol 21, 187–189.CrossRefGoogle Scholar
  32. Sharma, S., Cantwell, M., Kipps, T.J., and Friedmann, T. (1996). Efficient infection of a human T-cell line and of human primary peripheral blood leukocytes with a pseudotyped retrovirus vector. Proc Natl Acad Sci U S A 93, 11842–11847.CrossRefGoogle Scholar
  33. Teague, R.M., Sather, B.D., Sacks, J.A., Huang, M.Z., Dossett, M.L., Morimoto, J., Tan, X., Sutton, S.E., Cooke, M.P., Ohlén, C., et al. (2006). Interleukin-15 rescues tolerant CD8 + T cells for use in adoptive immunotherapy of established tumors. Nat Med 12, 335–341.CrossRefGoogle Scholar
  34. Toes, R.E., Ossendorp, F., Offringa, R., and Melief, C.J. (1999). CD4 T cells and their role in antitumor immune responses. J Exp Med 189, 753–756.CrossRefGoogle Scholar
  35. Willimsky, G., and Blankenstein, T. (2005). Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146.CrossRefGoogle Scholar
  36. Xie, Y., Akpinarli, A., Maris, C., Hipkiss, E.L., Lane, M., Kwon, E.K., Muranski, P., Restifo, N.P., and Antony, P.A. (2010). Naive tumorspecific CD4 (+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 207, 651–667.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jizhou Lv
    • 1
    • 2
  • Ning Tao
    • 1
  • Hao Wu
    • 1
  • Xiaoman Liu
    • 1
  • Xia Xu
    • 1
  • Yingxin Xu
    • 3
  • Zhihai Qin
    • 1
    Email author
  1. 1.National Laboratory of Biomacromolecules, Institute of BiophysicsChinese Academy of ScienceBeijingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Interventional UltrasoundChinese PLA General HospitalBeijingChina

Personalised recommendations