Dscam mutation leads to hydrocephalus and decreased motor function

  • 318 Accesses

  • 13 Citations


The nervous system is one of the most complicated organ systems in invertebrates and vertebrates. Down syndrome cell adhesion molecule (DSCAM) of the immunoglobulin (Ig) superfamily is expressed widely in the nervous system during embryonic development. Previous studies in Drosophila suggest that Dscam plays important roles in neural development including axon branching, dendritic tiling and cell spacing. However, the function of the mammalian DSCAM gene in the formation of the nervous system remains unclear. Here, we show that Dscamdel17 mutant mice exhibit severe hydrocephalus, decreased motor function and impaired motor learning ability. Our data indicate that the mammalian DSCAM gene is critical for the formation of the central nervous system.


  1. Agarwala, K.L., Ganesh, S., Suzuki, T., Akagi, T., Kaneko, K., Amano, K., Tsutsumi, Y., Yamaguchi, K., Hashikawa, T., and Yamakawa, K. (2001). Dscam is associated with axonal and dendritic features of neuronal cells. J Neurosci Res 66, 337–346.

  2. Agarwala, K.L., Nakamura, S., Tsutsumi, Y., and Yamakawa, K. (2000). Down syndrome cell adhesion molecule DSCAM mediates homophilic intercellular adhesion. Brain Res Mol Brain Res 79, 118–126.

  3. Amano, K., Fujii, M., Arata, S., Tojima, T., Ogawa, M., Morita, N., Shimohata, A., Furuichi, T., Itohara, S., Kamiguchi, H., et al. (2009). DSCAM deficiency causes loss of pre-inspiratory neuron synchroneity and perinatal death. J Neurosci 29, 2984–2996.

  4. Barlow, G.M., Lyons, G.E., Richardson, J.A., Sarnat, H.B., and Korenberg, J.R. (2002a). DSCAM: an endogenous promoter drives expression in the developing CNS and neural crest. Biochem Biophys Res Commun 299, 1–6.

  5. Barlow, G.M., Micales, B., Chen, X.N., Lyons, G.E., and Korenberg, J. R. (2002b). Mammalian DSCAMs: roles in the development of the spinal cord, cortex, and cerebellum? Biochem Biophys Res Commun 293, 881–891.

  6. Basel-Vanagaite, L., Straussberg, R., Friez, M.J., Inbar, D., Korenreich, L., Shohat, M., and Schwartz, C.E. (2006). Expanding the phenotypic spectrum of L1CAM-associated disease. Clin Genet 69, 414–419.

  7. Bertolin, C., Boaretto, F., Barbon, G., Salviati, L., Lapi, E., Divizia, M. T., Garavelli, L., Occhi, G., Vazza, G., and Mostacciuolo, M.L. (2010). Novel mutations in the L1CAM gene support the complexity of L1 syndrome. J Neurol Sci 294, 124–126.

  8. Brites, D., McTaggart, S., Morris, K., Anderson, J., Thomas, K., Colson, I., Fabbro, T., Little, T.J., Ebert, D., and Du Pasquier, L. (2008). The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol 25, 1429–1439.

  9. Del Bigio, M.R. (2010). Ependymal cells: biology and pathology. Acta Neuropathol 119, 55–73.

  10. Frankin, K.B.J., and Paxinos, G. (1997). The mouse brain in stereotaxic coordinates. New York: Academic.

  11. Fuerst, P.G., Bruce, F., Tian, M., Wei, W., Elstrott, J., Feller, M.B., Erskine, L., Singer, J.H., and Burgess, R.W. (2009). DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 64, 484–497.

  12. Fuerst, P.G., Koizumi, A., Masland, R.H., and Burgess, R.W. (2008). Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451, 470–474.

  13. Hattori, D., Demir, E., Kim, H.W., Viragh, E., Zipursky, S.L., and Dickson, B.J. (2007). Dscam diversity is essential for neuronal wiring and self-recognition. Nature 449, 223–227.

  14. Haverkamp, F., Wölfle, J., Aretz, M., Krämer, A., Höhmann, B., Fahnenstich, H., and Zerres, K. (1999). Congenital hydrocephalus internus and aqueduct stenosis: aetiology and implications for genetic counselling. Eur J Pediatr 158, 474–478.

  15. Hughes, M.E., Bortnick, R., Tsubouchi, A., Bäumer, P., Kondo, M., Uemura, T., and Schmucker, D. (2007). Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54, 417–427.

  16. Hummel, T., Vasconcelos, M.L., Clemens, J.C., Fishilevich, Y., Vosshall, L.B., and Zipursky, S.L. (2003). Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron 37, 221–231.

  17. Jackson, S.R., Guner, Y.S., Woo, R., Randolph, L.M., Ford, H., and Shin, C.E. (2009). L1CAM mutation in association with X-linked hydrocephalus and Hirschsprung’s disease. Pediatr Surg Int 25, 823–825.

  18. Jones, B.J., and Roberts, D.J. (1968). The quantiative measurement of motor inco-ordination in naive mice using an acelerating rotarod. J Pharm Pharmacol 20, 302–304.

  19. Jouet, M., Rosenthal, A., MacFarlane, J., Kenwrick, S., and Donnai, D. (1993). A missense mutation confirms the L1 defect in X-linked hydrocephalus (HSAS). Nat Genet 4, 331.

  20. Liebau, M.C., Gal, A., Superti-Furga, A., Omran, H., and Pohl, M. (2007). L1CAM mutation in a boy with hydrocephalus and duplex kidneys. Pediatr Nephrol 22, 1058–1061.

  21. Liu, G., Li, W., Wang, L., Kar, A., Guan, K.L., Rao, Y., and Wu, J.Y. (2009). DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc Natl Acad Sci U S A 106, 2951–2956.

  22. Ly, A., Nikolaev, A., Suresh, G., Zheng, Y., Tessier-Lavigne, M., and Stein, E. (2008). DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell 133, 1241–1254.

  23. Matthews, B.J., Kim, M.E., Flanagan, J.J., Hattori, D., Clemens, J.C., Zipursky, S.L., and Grueber, W.B. (2007). Dendrite self-avoidance is controlled by Dscam. Cell 129, 593–604.

  24. Meijers, R., Puettmann-Holgado, R., Skiniotis, G., Liu, J.H., Walz, T., Wang, J.H., and Schmucker, D. (2007). Structural basis of Dscam isoform specificity. Nature 449, 487–491.

  25. Nakamura, Y., Lee, S., Haddox, C.L., Weaver, E.J., and Lemmon, V.P. (2010). Role of the cytoplasmic domain of the L1 cell adhesion molecule in brain development. J Comp Neurol 518, 1113–1132.

  26. Schäfer, M.K., and Altevogt, P. (2010). L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci 67, 2425–2437.

  27. Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., and Zipursky, S.L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684.

  28. Soba, P., Zhu, S., Emoto, K., Younger, S., Yang, S.J., Yu, H.H., Lee, T., Jan, L.Y., and Jan, Y.N. (2007). Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 54, 403–416.

  29. Tapanes-Castillo, A., Weaver, E.J., Smith, R.P., Kamei, Y., Caspary, T., Hamilton-Nelson, K.L., Slifer, S.H., Martin, E.R., Bixby, J.L., and Lemmon, V.P. (2010). A modifier locus on chromosome 5 contributes to L1 cell adhesion molecule X-linked hydrocephalus in mice. Neurogenetics 11, 53–71.

  30. Vos, Y.J., and Hofstra, R.M. (2010). An updated and upgraded L1CAM mutation database. Hum Mutat 31, E1102–E1109.

  31. Wang, J., Zugates, C.T., Liang, I.H., Lee, C.H., and Lee, T. (2002). Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron 33, 559–571.

  32. Wilson, P.L., Kattman, B.B., Mulvihill, J.J., Li, S., Wilkins, J., Wagner, A.F., and Goodman, J.R. (2009). Prenatal identification of a novel R937P L1CAM missense mutation. Genet Test Mol Biomarkers 13, 515–519.

  33. Wojtowicz, W.M., Flanagan, J.J., Millard, S.S., Zipursky, S.L., and Clemens, J.C. (2004). Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118, 619–633.

  34. Wojtowicz, W.M., Wu, W., Andre, I., Qian, B., Baker, D., and Zipursky, S.L. (2007). A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130, 1134–1145.

  35. Yamagata, M., Sanes, J.R. (2010). Synaptic localization and function of Sidekick recognition molecules require MAGI scaffolding proteins. J Neurosci 30, 3579–3588.

  36. Yamakawa, K., Huot, Y.K., Haendelt, M.A., Hubert, R., Chen, X.N., Lyons, G.E., and Korenberg, J.R. (1998). DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum Mol Genet 7, 227–237.

  37. Zhang, J., Williams, M.A., and Rigamonti, D. (2006). Genetics of human hydrocephalus. J Neurol 253, 1255–1266.

Download references

Author information

Correspondence to Haihong Ye or Qi Xu or Jane Y. Wu.

Electronic supplementary material

Supplementary material, approximately 27.8 MB.

Supplementary material, approximately 27.8 MB.

Supplementary material, approximately 27.6 MB.

Supplementary material, approximately 27.6 MB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, Y., Ye, H., Shen, Y. et al. Dscam mutation leads to hydrocephalus and decreased motor function. Protein Cell 2, 647–655 (2011) doi:10.1007/s13238-011-1072-8

Download citation


  • Down syndrome cell adhesion molecule
  • motor function
  • motor learning
  • hydrocephalus