Protein & Cell

, Volume 2, Issue 6, pp 437–444 | Cite as

Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by BmK neurotoxins

Review

Abstract

Diverse subtypes of voltage-gated sodium channels (VGSCs) have been found throughout tissues of the brain, muscles and the heart. Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch (BmK) act as sodium channel-specific modulators and have therefore been widely used to study VGSCs. α-type neurotoxins, named BmK I, BmK αIV and BmK abT, bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs. In contrast, β-type neurotoxins, named BmK AS, BmK AS-1, BmK IT and BmK IT2, occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels. Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs, however, indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simple α-type and β-type neurotoxin distinction. Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region- and/or species-specific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs. In this review, we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3- or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species.

Keywords

voltage-gated sodium channel receptor sites scorpion neurotoxins 

References

  1. Amaya, F., Decosterd, I., Samad, T.A., Plumpton, C., Tate, S., Mannion, R.J., Costigan, M., and Woolf, C.J. (2000). Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol Cell Neurosci 15, 331–342.CrossRefGoogle Scholar
  2. Beckh, S., Noda, M., Lübbert, H., and Numa, S. (1989). Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 8, 3611–3616.Google Scholar
  3. Benzinger, G.R., Kyle, J.W., Blumenthal, K.M., and Hanck, D.A. (1998). A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J Biol Chem 273, 80–84.CrossRefGoogle Scholar
  4. Black, J.A., Dib-Hajj, S., McNabola, K., Jeste, S., Rizzo, M.A., Kocsis, J.D., and Waxman, S.G. (1996). Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Brain Res Mol Brain Res 43, 117–131.CrossRefGoogle Scholar
  5. Catterall, W.A. (1995). Structure and function of voltage-gated ion channels. Annu Rev Biochem 64, 493–531.CrossRefGoogle Scholar
  6. Catterall, W.A. (2000). From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25.CrossRefGoogle Scholar
  7. Cestèle, S., and Catterall, W.A. (2000). Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82, 883–892.CrossRefGoogle Scholar
  8. Cestèle, S., Kopeyan, C., Oughideni, R., Mansuelle, P., Granier, C., and Rochat, H. (1997). Biochemical and pharmacological characterization of a depressant insect toxin from the venom of the scorpion Buthacus arenicola. Eur J Biochem 243, 93–99.CrossRefGoogle Scholar
  9. Cestèle, S., Qu, Y., Rogers, J.C., Rochat, H., Scheuer, T., and Catterall, W.A. (1998). Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3–S4 loop in domain II. Neuron 21, 919–931.CrossRefGoogle Scholar
  10. Cestèle, S., Yarov-Yarovoy, V., Qu, Y., Sampieri, F., Scheuer, T., and Catterall, W.A. (2006). Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. J Biol Chem 281, 21332–21344.CrossRefGoogle Scholar
  11. Chai, Z.F., Bai, Z.T., Liu, T., Pang, X.Y., and Ji, Y.H. (2006a). The binding of BmK IT2 on mammal and insect sodium channels by surface plasmon resonance assay. Pharmacol Res 54, 85–90.CrossRefGoogle Scholar
  12. Chai, Z.F., Zhu, M.M., Bai, Z.T., Liu, T., Tan, M., Pang, X.Y., and Ji, Y. H. (2006b). Chinese-scorpion (Buthus martensi Karsch) toxin BmK alphaIV, a novel modulator of sodium channels: from genomic organization to functional analysis. Biochem J 399, 445–453.CrossRefGoogle Scholar
  13. Cohen, L., Ilan, N., Gur, M., Stühmer, W., Gordon, D., and Gurevitz, M. (2007). Design of a specific activator for skeletal muscle sodium channels uncovers channel architecture. J Biol Chem 282, 29424–29430.CrossRefGoogle Scholar
  14. Couraud, F., Jover, E., Dubois, J.M., and Rochat, H. (1982). Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20, 9–16.CrossRefGoogle Scholar
  15. Darbon, H., Jover, E., Couraud, F., and Rochat, H. (1983). Photoaffinity labeling of alpha- and beta- scorpion toxin receptors associated with rat brain sodium channel. Biochem Biophys Res Commun 115, 415–422.CrossRefGoogle Scholar
  16. De Lima, M.E., Figueiredo, S.G., Pimenta, A.M., Santos, D.M., Borges, M.H., Cordeiro, M.N., Richardson, M., Oliveira, L.C., Stankiewicz, M., and Pelhate, M. (2007). Peptides of arachnid venoms with insecticidal activity targeting sodium channels. Comp Biochem Physiol C Toxicol Pharmacol 146, 264–279.CrossRefGoogle Scholar
  17. Dib-Hajj, S.D., Black, J.A., Cummins, T.R., Kenney, A.M., Kocsis, J. D., and Waxman, S.G. (1998). Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo. J Neurophysiol 79, 2668–2676.Google Scholar
  18. Dong, K. (1997). A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem Mol Biol 27, 93–100.CrossRefGoogle Scholar
  19. Feng, G., Deák, P., Chopra, M., and Hall, L.M. (1995). Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell 82, 1001–1011.CrossRefGoogle Scholar
  20. Goldin, A.L. (2002). Evolution of voltage-gated Na(+) channels. J Exp Biol 205, 575–584.Google Scholar
  21. Gordon, D., Savarin, P., Gurevitz, M., and Zinn-Justin, S. (1998). Functional anatomy of scorpion toxins affecting sodium channels. J Toxicol Toxin Rev 2, 131–159.CrossRefGoogle Scholar
  22. Goudet, C., Chi, C.W., and Tytgat, J. (2002). An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon 40, 1239–1258.CrossRefGoogle Scholar
  23. He, H., Liu, Z., Dong, B., Zhang, J., Shu, X., Zhou, J., and Ji, Y. (2011). Localization of receptor site on insect sodium channel for depressant β-toxin BmK IT2. PLoS ONE 6, e14510.CrossRefGoogle Scholar
  24. He, H., Liu, Z., Dong, B., Zhou, J., Zhu, H., and Ji, Y. (2010). Molecular determination of selectivity of the site 3 modulator (BmK I) to sodium channels in the CNS: a clue to the importance of Nav1.6 in BmK I-induced neuronal hyperexcitability. Biochem J 431, 289–298.CrossRefGoogle Scholar
  25. Ji, Y.H., Li, Y.J., Zhang, J.W., Song, B.L., Yamaki, T., Mochizuki, T., Hoshino, M., and Yanaihara, N. (1999). Covalent structures of BmK AS and BmK AS-1, two novel bioactive polypeptides purified from Chinese scorpion Buthus martensi Karsch. Toxicon 37, 519–536.CrossRefGoogle Scholar
  26. Ji, Y.H., and Liu, T. (2008). The study of sodium channels involved in pain responses using specific modulators. Sheng Li Xue Bao 60, 628–634.Google Scholar
  27. Ji, Y.H., Mansuelle, P., Terakawa, S., Kopeyan, C., Yanaihara, N., Hsu, K., and Rochat, H. (1996). Two neurotoxins (BmK I and BmK II) from the venom of the scorpion Buthus martensi Karsch: purification, amino acid sequences and assessment of specific activity. Toxicon 34, 987–1001.CrossRefGoogle Scholar
  28. Ji, Y.H., Mansuelle, P., Xu, K., Granier, C., Kopeyan, C., Terakawa, S., and Rochat, H. (1994). Amino acid sequence of an excitatory insect-selective toxin (BmK IT) from venom of the scorpion Buthus martensi Karsch. Sci China B 37, 42–49.Google Scholar
  29. Ji, Y.H., Wang, W.X., Wang, Q., and Huang, Y.P. (2002). The binding of BmK abT, a unique neurotoxin, to mammal brain and insect Na (+) channels using biosensor. Eur J Pharmacol 454, 25–30.CrossRefGoogle Scholar
  30. Jia, L.Y., Xie, H.F., and Ji, Y.H. (2000). Characterization of four distinct monoclonal antibodies specific to BmK AS-1, a novel scorpion bioactive polypeptide. Toxicon 38, 605–617.CrossRefGoogle Scholar
  31. Jia, L.Y., Zhang, J.W., and Ji, Y.H. (1999). Biosensor binding assay of BmK AS-1, a novel Na + channel-blocking scorpion ligand on rat brain synaptosomes. Neuroreport 10, 3359–3362.CrossRefGoogle Scholar
  32. Kontis, K.J., Rounaghi, A., and Goldin, A.L. (1997). Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol 110, 391–401.CrossRefGoogle Scholar
  33. Legros, C., Martin-Eauclaire, M.F., and Cattaert, D. (1998). The myth of scorpion suicide: are scorpions insensitive to their own venom? J Exp Biol 201, 2625–2636.Google Scholar
  34. Leipold, E., Hansel, A., Borges, A., and Heinemann, S.H. (2006). Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol Pharmacol 70, 340–347.Google Scholar
  35. Leipold, E., Lu, S., Gordon, D., Hansel, A., and Heinemann, S.H. (2004). Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and LqhalphaIT with sodium channel receptor sites-3. Mol Pharmacol 65, 685–691.CrossRefGoogle Scholar
  36. Li, Y.J., and Ji, Y.H. (2000). Binding characteristics of BmK I, an alphalike scorpion neurotoxic polypeptide, on cockroach nerve cord synaptosomes. J Pept Res 56, 195–200.CrossRefGoogle Scholar
  37. Li, Y.J., Liu, Y., and Ji, Y.H. (2000a). BmK AS: new scorpion neurotoxin binds to distinct receptor sites of mammal and insect voltage-gated sodium channels. J Neurosci Res 61, 541–548.CrossRefGoogle Scholar
  38. Li, Y.J., Tan, Z.Y., and Ji, Y.H. (2000b). The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium channels. Neurosci Res 38, 257–264.CrossRefGoogle Scholar
  39. Liu, Z., Chung, I., and Dong, K. (2001). Alternative splicing of the BSC1 gene generates tissue-specific isoforms in the German cockroach. Insect Biochem Mol Biol 31, 703–713.CrossRefGoogle Scholar
  40. Loughney, K., Kreber, R., and Ganetzky, B. (1989). Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell 58, 1143–1154.CrossRefGoogle Scholar
  41. Ma Z., T. L., Lu S., Kong J., Gordon D., Kallen R.G., (2000). The domain 4 S3-S4 extracellular loop provides molecular determinants for binding of -scorpion toxins (LqhII, and LqhIT) to the voltage-gated rat skeletal muscle Na + channel (rSkM1). Biophys Soc Abstract.Google Scholar
  42. Mandel, G. (1992). Tissue-specific expression of the voltagesensitive sodium channel. J Membr Biol 125, 193–205.CrossRefGoogle Scholar
  43. Mantegazza, M., and Cestèle, S. (2005). Beta-scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels. J Physiol 568, 13–30.CrossRefGoogle Scholar
  44. Mitrovic, N., George, A.L. Jr, and Horn, R. (1998). Independent versus coupled inactivation in sodium channels. Role of the domain 2 S4 segment. J Gen Physiol 111, 451–462.CrossRefGoogle Scholar
  45. Ramaswami, M., and Tanouye, M.A. (1989). Two sodium-channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci USA 86, 2079–2082.CrossRefGoogle Scholar
  46. Renganathan, M., Dib-Hajj, S., and Waxman, S.G. (2002). Na(v)1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons. Brain Res Mol Brain Res 106, 70–82.CrossRefGoogle Scholar
  47. Rogart, R.B., Cribbs, L.L., Muglia, L.K., Kephart, D.D., and Kaiser, M. W. (1989). Molecular cloning of a putative tetrodotoxin-resistant rat heart Na + channel isoform. Proc Natl Acad Sci USA 86, 8170–8174.CrossRefGoogle Scholar
  48. Rogers, J.C., Qu, Y., Tanada, T.N., Scheuer, T., and Catterall, W.A. (1996). Molecular determinants of high affinity binding of alphascorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na + channel alpha subunit. J Biol Chem 271, 15950–15962.CrossRefGoogle Scholar
  49. Smith, T.J., Lee, S.H., Ingles, P.J., Knipple, D.C., and Soderlund, D.M. (1997). The L1014F point mutation in the house fly Vssc1 sodium channel confers knockdown resistance to pyrethroids. Insect Biochem Mol Biol 27, 807–812.CrossRefGoogle Scholar
  50. Soderlund, D.M., and Knipple, D.C. (2003). The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33, 563–577.CrossRefGoogle Scholar
  51. Tan, J., Liu, Z., Nomura, Y., Goldin, A.L., and Dong, K. (2002a). Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J Neurosci 22, 5300–5309.Google Scholar
  52. Tan, J., Liu, Z., Tsai, T.D., Valles, S.M., Goldin, A.L., and Dong, K. (2002b). Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin. Insect Biochem Mol Biol 32, 445–454.CrossRefGoogle Scholar
  53. Tan, J., Liu, Z., Wang, R., Huang, Z.Y., Chen, A.C., Gurevitz, M., and Dong, K. (2005). Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding. Mol Pharmacol 67, 513–522.CrossRefGoogle Scholar
  54. Tan, Z.Y., Xiao, H., Mao, X., Wang, C.Y., Zhao, Z.Q., and Ji, Y.H. (2001). The inhibitory effects of BmK IT2, a scorpion neurotoxin on rat nociceptive flexion reflex and a possible mechanism for modulating voltage-gated Na(+) channels. Neuropharmacology 40, 352–357.CrossRefGoogle Scholar
  55. Tejedor, F.J., and Catterall, W.A. (1988). Site of covalent attachment of alpha-scorpion toxin derivatives in domain I of the sodium channel alpha subunit. Proc Natl Acad Sci USA 85, 8742–8746.CrossRefGoogle Scholar
  56. Terakawa, S., Kimura, Y., Hsu, K., and Ji, Y.H. (1989). Lack of effect of a neurotoxin from the scorpion Buthus martensi Karsch on nerve fibers of this scorpion. Toxicon 27, 569–578.CrossRefGoogle Scholar
  57. Thackeray, J.R., and Ganetzky, B. (1994). Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel isoforms. J Neurosci 14, 2569–2578.Google Scholar
  58. Thomsen, W.J., and Catterall, W.A. (1989). Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci USA 86, 10161–10165.CrossRefGoogle Scholar
  59. Trimmer, J.S., Cooperman, S.S., Tomiko, S.A., Zhou, J.Y., Crean, S. M., Boyle, M.B., Kallen, R.G., Sheng, Z.H., Barchi, R.L., Sigworth, F.J.,et al. (1989). Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3, 33–49.CrossRefGoogle Scholar
  60. Trimmer, J.S., and Rhodes, K.J. (2004). Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66, 477–519.CrossRefGoogle Scholar
  61. Wang, R., Huang, Z.Y., and Dong, K. (2003). Molecular characterization of an arachnid sodium channel gene from the varroa mite (Varroa destructor). Insect Biochem Mol Biol 33, 733–739.CrossRefGoogle Scholar
  62. Warmke, J.W., Reenan, R.A., Wang, P., Qian, S., Arena, J.P., Wang, J., Wunderler, D., Liu, K., Kaczorowski, G.J., Van der Ploeg, L.H., et al. (1997). Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. J Gen Physiol 110, 119–133.CrossRefGoogle Scholar
  63. Zuo, X.P., He, H.Q., He, M., Liu, Z.R., Xu, Q., Ye, J.G., and Ji, Y.H. (2006). Comparative pharmacology and cloning of two novel arachnid sodium channels: Exploring the adaptive insensitivity of scorpion to its toxins. FEBS Lett 580, 4508–4514.CrossRefGoogle Scholar
  64. Zuo, X.P., and Ji, Y.H. (2004). Molecular mechanism of scorpion neurotoxins acting on sodium channels: insight into their diverse selectivity. Mol Neurobiol 30, 265–278.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratory of Neuropharmacology and NeurotoxicologyShanghai UniversityShanghaiChina

Personalised recommendations