Advertisement

Protein & Cell

, Volume 2, Issue 6, pp 487–496 | Cite as

Interactomic study on interaction between lipid droplets and mitochondria

  • Jing Pu
  • Cheol Woong Ha
  • Shuyan Zhang
  • Jong Pil Jung
  • Won-Ki HuhEmail author
  • Pingsheng LiuEmail author
Research Article

Abstract

An increasing body of evidence shows that the lipid droplet, a neutral lipid storage organelle, plays a role in lipid metabolism and energy homeostasis through its interaction with mitochondria. However, the cellular functions and molecular mechanisms of the interaction remain ambiguous. Here we present data from transmission electron microscopy, fluorescence imaging, and reconstitution assays, demonstrating that lipid droplets physically contact mitochondria in vivo and in vitro. Using a bimolecular fluorescence complementation assay in Saccharomyces cerevisiae, we generated an interactomic map of protein-protein contacts of lipid droplets with mitochondria and peroxisomes. The lipid droplet proteins Erg6 and Pet10 were found to be involved in 75% of the interactions detected. Interestingly, interactions between 3 pairs of lipid metabolic enzymes were detected. Collectively, these data demonstrate that lipid droplets make physical contacts with mitochondria and peroxisomes, and reveal specific molecular interactions that suggest active participation of lipid droplets in lipid metabolism in yeast.

Keywords

peroxisomes bimolecular fluorescence complementation assay protein-protein interaction lipid metabolism Erg6 

Supplementary material

13238_2011_1061_MOESM1_ESM.pdf (258 kb)
Supplementary material, approximately 257 KB.

References

  1. Beller, M., Riedel, D., Jänsch, L., Dieterich, G., Wehland, J., Jäckle, H., and Kühnlein, R.P. (2006). Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 5, 1082–1094.CrossRefGoogle Scholar
  2. Binns, D., Januszewski, T., Chen, Y., Hill, J., Markin, V.S., Zhao, Y., Gilpin, C., Chapman, K.D., Anderson, R.G., and Goodman, J.M. (2006). An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173, 719–731.CrossRefGoogle Scholar
  3. Blanchette-Mackie, E.J., and Scow, R.O. (1983). Movement of lipolytic products to mitochondria in brown adipose tissue of young rats: an electron microscope study. J Lipid Res 24, 229–244.Google Scholar
  4. Blondel, M., Bach, S., Bamps, S., Dobbelaere, J., Wiget, P., Longaretti, C., Barral, Y., Meijer, L., and Peter, M. (2005). Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast. EMBO J 24, 1440–1452.CrossRefGoogle Scholar
  5. Brasaemle, D.L., Dolios, G., Shapiro, L., and Wang, R. (2004). Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279, 46835–46842.CrossRefGoogle Scholar
  6. Cermelli, S., Guo, Y., Gross, S.P., and Welte, M.A. (2006). The lipiddroplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16, 1783–1795.CrossRefGoogle Scholar
  7. Egan, J.J., Greenberg, A.S., Chang, M.K., Wek, S.A., Moos, M.C. Jr, and Londos, C. (1992). Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A 89, 8537–8541.CrossRefGoogle Scholar
  8. Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M., and Bard, M. (1989). The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cyclesparking sterol. Mol Cell Biol 9, 3447–3456.CrossRefGoogle Scholar
  9. Goodman, J.M. (2008). The gregarious lipid droplet. J Biol Chem 283, 28005–28009.CrossRefGoogle Scholar
  10. Guo, Y., Jangi, S., and Welte, M.A. (2005). Organelle-specific control of intracellular transport: distinctly targeted isoforms of the regulator Klar. Mol Biol Cell 16, 1406–1416.CrossRefGoogle Scholar
  11. Hu, C.D., and Kerppola, T.K. (2003). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21, 539–545.CrossRefGoogle Scholar
  12. Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O’shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686–691.CrossRefGoogle Scholar
  13. Jägerström, S., Polesie, S., Wickström, Y., Johansson, B.R., Schröder, H.D., Højlund, K., and Boström, P. (2009). Lipid droplets interact with mitochondria using SNAP23. Cell Biol Int 33, 934–940.CrossRefGoogle Scholar
  14. Kalashnikova, M.M., and Fadeeva, E.O. (2006). Ultrastructural study of liver cells from rooks living in ecologically unfavorable areas. Izv Akad Nauk Ser Biol (2), 133–141.Google Scholar
  15. Katavic, V., Agrawal, G.K., Hajduch, M., Harris, S.L., and Thelen, J.J. (2006). Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6, 4586–4598.CrossRefGoogle Scholar
  16. Liu, P., Bartz, R., Zehmer, J.K., Ying, Y., and Anderson, R.G. (2008). Rab-regulated membrane traffic between adiposomes and multiple endomembrane systems. Methods Enzymol 439, 327–337.CrossRefGoogle Scholar
  17. Liu, P., Bartz, R., Zehmer, J.K., Ying, Y.S., Zhu, M., Serrero, G., and Anderson, R.G. (2007). Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta 1773, 784–793.CrossRefGoogle Scholar
  18. Liu, P., Ying, Y., Zhao, Y., Mundy, D.I., Zhu, M., and Anderson, R.G. (2004). Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279, 3787–3792.CrossRefGoogle Scholar
  19. Martin, S., and Parton, R.G. (2006). Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7, 373–378.CrossRefGoogle Scholar
  20. Murphy, D.J. (2001). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40, 325–438.CrossRefGoogle Scholar
  21. Murphy, S., Martin, S., and Parton, R.G. (2009). Lipid dropletorganelle interactions; sharing the fats. Biochim Biophys Acta 1791, 441–447.CrossRefGoogle Scholar
  22. Novikoff, A.B., Novikoff, P.M., Rosen, O.M., and Rubin, C.S. (1980). Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 87, 180–196.CrossRefGoogle Scholar
  23. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504.CrossRefGoogle Scholar
  24. Shaw, C.S., Jones, D.A., and Wagenmakers, A.J. (2008). Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129, 65–72.CrossRefGoogle Scholar
  25. Sung, M.K., and Huh, W.K. (2007). Bimolecular fluorescence complementation analysis system for in vivo detection of proteinprotein interaction in Saccharomyces cerevisiae. Yeast 24, 767–775.CrossRefGoogle Scholar
  26. Tarnopolsky, M.A., Rennie, C.D., Robertshaw, H.A., Fedak-Tarnopolsky, S.N., Devries, M.C., and Hamadeh, M.J. (2007). Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 292, R1271–R1278.CrossRefGoogle Scholar
  27. Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R., and Fujimoto, T. (2002). The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 277, 44507–44512.CrossRefGoogle Scholar
  28. Tedrick, K., Trischuk, T., Lehner, R., and Eitzen, G. (2004). Enhanced membrane fusion in sterol-enriched vacuoles bypasses the Vrp1p requirement. Mol Biol Cell 15, 4609–4621.CrossRefGoogle Scholar
  29. Turró, S., Ingelmo-Torres, M., Estanyol, J.M., Tebar, F., Fernández, M. A., Albor, C.V., Gaus, K., Grewal, T., Enrich, C., and Pol, A. (2006). Identification and characterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7, 1254–1269.CrossRefGoogle Scholar
  30. Zehmer, J.K., Huang, Y., Peng, G., Pu, J., Anderson, R.G., and Liu, P. (2009). A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9, 914–921.CrossRefGoogle Scholar
  31. Zhang, S., Du, Y., Wang, Y., and Liu, P. (2010). Lipid Droplet — A Cellular Organelle for Lipid Metabolism. Acta Biophisica Sinica 26, 97–105.Google Scholar
  32. Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.National Laboratory of Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Biological Sciences, Research Center for Functional Cellulomics, Institute of MicrobiologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations