Protein & Cell

, Volume 2, Issue 4, pp 282–290

Activation and maturation of SARS-CoV main protease

Review

Abstract

The worldwide outbreak of the severe acute respiratory syndrome (SARS) in 2003 was due to the transmission of SARS coronavirus (SARS-CoV). The main protease (Mpro) of SARS-CoV is essential for the viral life cycle, and is considered to be an attractive target of anti-SARS drug development. As a key enzyme for proteolytic processing of viral polyproteins to produce functional non-structure proteins, Mpro is first auto-cleaved out of polyproteins. The monomeric form of Mpro is enzymatically inactive, and it is activated through homo-dimerization which is strongly affected by extra residues to both ends of the mature enzyme. This review provides a summary of the related literatures on the study of the quaternary structure, activation, and self-maturation of Mpro over the past years.

Keywords

severe acute respiratory syndrome Mpro structure dimerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., and Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300, 1763–1767.CrossRefGoogle Scholar
  2. Barrila, J., Bacha, U., and Freire, E. (2006). Long-range cooperative interactions modulate dimerization in SARS 3CLpro. Biochemistry 45, 14908–14916.CrossRefGoogle Scholar
  3. Chan, H.L., Tsui, S.K., and Sung, J.J. (2003). Coronavirus in severe acute respiratory syndrome (SARS). Trends Mol Med 9, 323–325.CrossRefGoogle Scholar
  4. Chang, H.P., Chou, C.Y., and Chang, G.G. (2007). Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride. Biophys J 92, 1374–1383.CrossRefGoogle Scholar
  5. Chen, H., Wei, P., Huang, C., Tan, L., Liu, Y., and Lai, L. (2006). Only one protomer is active in the dimer of SARS 3C-like proteinase. J Biol Chem 281, 13894–13898.CrossRefGoogle Scholar
  6. Chen, S., Chen, L., Tan, J., Chen, J., Du, L., Sun, T., Shen, J., Chen, K., Jiang, H., and Shen, X. (2005). Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations. J Biol Chem 280, 164–173.CrossRefGoogle Scholar
  7. Chen, S., Hu, T., Zhang, J., Chen, J., Chen, K., Ding, J., Jiang, H., and Shen, X. (2008a). Mutation of Gly-11 on the dimer interface results in the complete crystallographic dimer dissociation of severe acute respiratory syndrome coronavirus 3C-like protease: crystal structure with molecular dynamics simulations. J Biol Chem 283, 554–564.CrossRefGoogle Scholar
  8. Chen, S., Jonas, F., Shen, C., and Higenfeld, R. (2010). Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein Cell 1, 59–74.CrossRefGoogle Scholar
  9. Chen, S., Zhang, J., Hu, T.C., Chen, K.X., Jiang, H.L., and Shen, X. (2008b). Residues on the dimer interface of SARS coronavirus 3Clike protease: dimer stability characterization and enzyme catalytic activity analysis. J Biochem 143, 525–536.CrossRefGoogle Scholar
  10. Cheng, S.C., Chang, G.G., and Chou, C.Y. (2010). Mutation of Glu-166 blocks the substrate-induced dimerization of SARS corona-virus main protease. Biophys J 98, 1327–1336.CrossRefGoogle Scholar
  11. Chou, C.Y., Chang, H.C., Hsu, W.C., Lin, T.Z., Lin, C.H., and Chang, G.G. (2004). Quaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease. Biochemistry 43, 14958–14970.CrossRefGoogle Scholar
  12. Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J., et al. (2004). Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem 279, 1637–1642.CrossRefGoogle Scholar
  13. Graziano, V., McGrath, W.J., DeGruccio, A.M., Dunn, J.J., and Mangel, W.F. (2006a). Enzymatic activity of the SARS coronavirus main proteinase dimer. FEBS Lett 580, 2577–2583.CrossRefGoogle Scholar
  14. Graziano, V., McGrath, W.J., Yang, L., and Mangel, W.F. (2006b). SARS CoV main proteinase: The monomer-dimer equilibrium dissociation constant. Biochemistry 45, 14632–14641.CrossRefGoogle Scholar
  15. Grum-Tokars, V., Ratia, K., Begaye, A., Baker, S.C., and Mesecar, A. D. (2008). Evaluating the 3C-like protease activity of SARSCoronavirus: Recommendations for standardized assays for drug discovery. Virus Res 133, 63–73CrossRefGoogle Scholar
  16. Hsu, M.F., Kuo, C.J., Chang, K.T., Chang, H.C., Chou, C.C., Ko, T.P., Shr, H.L., Chang, G.G., Wang, A.H., and Liang, P.H. (2005a). Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem 280, 31257–31266.CrossRefGoogle Scholar
  17. Hsu, W.C., Chang, H.C., Chou, C.Y., Tsai, P.J., Lin, P.I., and Chang, G.G. (2005b). Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease. J Biol Chem 280, 22741–22748.CrossRefGoogle Scholar
  18. Hu, T., Zhang, Y., Li, L., Wang, K., Chen, S., Chen, J., Ding, J., Jiang, H., and Shen, X. (2009). Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure. Virology 388, 324–334.CrossRefGoogle Scholar
  19. Seipelt, J., Guarne, A., Bergmann, E., James, M., Sommergruber, W., Fita, I., and Skern, T., (1999). The structures of picornaviral proteinases. Virus Res 62, 159–168.CrossRefGoogle Scholar
  20. Knoops, K., Kikkert, M., Worm, S.H., Zevenhoven-Dobbe, J.C., van der Meer, Y., Koster, A.J., Mommaas, A.M., and Snijder, E.J. (2008). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6, e226.CrossRefGoogle Scholar
  21. Kuiken, T., Fouchier, R.A., Schutten, M., Rimmelzwaan, G.F., van Amerongen, G., van Riel, D., Laman, J.D., de Jong, T., van Doornum, G., Lim, W., et al. (2003). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270.CrossRefGoogle Scholar
  22. Kuo, C.J., Chi, Y.H., Hsu, J.T., and Liang, P.H. (2004). Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem Biophys Res Commun 318, 862–867.CrossRefGoogle Scholar
  23. Leng, Q., and Bentwich, Z. (2003). A novel coronavirus and SARS. N Engl J Med 349, 709.CrossRefGoogle Scholar
  24. Li, C., Qi, Y., Teng, X., Yang, Z., Wei, P., Zhang, C., Tan, L., Zhou, L., Liu, Y., and Lai, L. (2010). Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase. J Biol Chem 285, 28134–28140.CrossRefGoogle Scholar
  25. Lin, C.W., Tsai, C.H., Tsai, F.J., Chen, P.J., Lai, C.C., Wan, L., Chiu, H. H., and Lin, K.H. (2004). Characterization of trans- and ciscleavage activity of the SARS coronavirus 3CLpro protease: basis for the in vitro screening of anti-SARS drugs. FEBS Lett 574, 131–137.CrossRefGoogle Scholar
  26. Lin, P.Y., Chou, C.Y., Chang, H.C., Hsu, W.C., and Chang, G.G. (2008). Correlation between dissociation and catalysis of SARSCoV main protease. Arch Biochem Biophys 472, 34–42.CrossRefGoogle Scholar
  27. Perlman, S., and Netland, J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7, 439–450.CrossRefGoogle Scholar
  28. Seipelt, J., Guarné, A., Bergmann, E., James, M., Sommergruber, W., Fita, I., and Skern, T. (1999). The structures of picornaviral proteinases. Virus Res 62, 159–168.CrossRefGoogle Scholar
  29. Shan, Y.F., Li, S.F., and Xu, G.J. (2004). A novel auto-cleavage assay for studying mutational effects on the active site of severe acute respiratory syndrome coronavirus 3C-like protease. Biochem Biophys Res Commun 324, 579–583.CrossRefGoogle Scholar
  30. Shi, J., Sivaraman, J., and Song, J. (2008). Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease. J Virol 82, 4620–4629.CrossRefGoogle Scholar
  31. Shi, J., and Song, J. (2006). The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J 273, 1035–1045.CrossRefGoogle Scholar
  32. Shi, J., Wei, Z., and Song, J. (2004). Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors. J Biol Chem 279, 24765–24773.CrossRefGoogle Scholar
  33. Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., Guan, Y., Rozanov, M., Spaan, W.J., and Gorbalenya, A.E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331, 991–1004.CrossRefGoogle Scholar
  34. Tan, J., Verschueren, K.H., Anand, K., Shen, J., Yang, M., Xu, Y., Rao, Z., Bigalke, J., Heisen, B., Mesters, J.R., et al. (2005). pHdependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J Mol Biol 354, 25–40.CrossRefGoogle Scholar
  35. Wei, P., Fan, K., Chen, H., Ma, L., Huang, C., Tan, L., Xi, D., Li, C., Liu, Y., Cao, A., et al. (2006). The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochem Biophys Res Commun 339, 865–872.CrossRefGoogle Scholar
  36. Wei, P., Li, C.M., Zhou, L., Liu, Y., and Lai, L.H. (2010). Substrate Binding and Homo Dimerization of SARS 3CL Proteinase are Mutual Allosteric Effectors. Acta Phys Chim Sin 26, 5.Google Scholar
  37. Xu, T., Ooi, A., Lee, H.C., Wilmouth, R., Liu, D.X., and Lescar, J. (2005). Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer. Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 964–966.CrossRefGoogle Scholar
  38. Xue, X., Yang, H., Shen, W., Zhao, Q., Li, J., Yang, K., Chen, C., Jin, Y., Bartlam, M., and Rao, Z. (2007). Production of authentic SARSCoV M(pro) with enhanced activity: application as a novel tagcleavage endopeptidase for protein overproduction. J Mol Biol 366, 965–975.CrossRefGoogle Scholar
  39. Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., et al. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3, e324.CrossRefGoogle Scholar
  40. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., et al. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 100, 13190–13195.CrossRefGoogle Scholar
  41. Zhang, S.N., Zhong, N., Xue, F., Kang, X., Ren, X.B., Jin, C.W., Lou, Z.Y., and Xia, B. (2010). Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease. Protein Cell 1, 371–383.CrossRefGoogle Scholar
  42. Zhong, N., Zhang, S., Xue, F., Kang, X., Zou, P., Chen, J., Liang, C., Rao, Z., Jin, C., Lou, Z., et al. (2009). C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer. Protein Sci 18, 839–844.Google Scholar
  43. Zhong, N., Zhang, S., Zou, P., Chen, J., Kang, X., Li, Z., Liang, C., Jin, C., and Xia, B. (2008). Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain. J Virol 82, 4227–4234.CrossRefGoogle Scholar
  44. Ziebuhr, J., Snijder, E.J., and Gorbalenya, A.E. (2000). Virusencoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853–879.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life SciencesPeking UniversityBeijingChina

Personalised recommendations