Protein & Cell

, Volume 2, Issue 3, pp 237–249

The tumor suppressor RASSF1A is a novel effector of small G protein Rap1A

  • Sunil K. Verma
  • Trivadi S. Ganesan
  • Uday Kishore
  • Peter J. Parker
Research Article


Rap1A is a small G protein implicated in a spectrum of biological processes such as cell proliferation, adhesion, differentiation, and embryogenesis. The downstream effectors through which Rap1A mediates its diverse effects are largely unknown. Here we show that Rap1A, but not the related small G proteins Rap2 or Ras, binds the tumor suppressor Ras association domain family 1A (RASSF1A) in a manner that is regulated by phosphorylation of RASSF1A. Interaction with Rap1A is shown to influence the effect of RASSF1A on microtubule behavior.


RASSF1A Rap1A microtubule vimentin protein-protein interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13238_2011_1028_MOESM1_ESM.pdf (145 kb)
Supplementary material, approximately 144 KB.


  1. Armesilla, A.L., Williams, J.C., Buch, M.H., Pickard, A., Emerson, M., Cartwright, E.J., Oceandy, D., Vos, M.D., Gillies, S., Clark, G.J., et al. (2004). Novel functional interaction between the plasma membrane Ca2+ pump 4b and the proapoptotic tumor suppressor Ras-associated factor 1 (RASSF1). J Biol Chem 279, 31318–31328.CrossRefGoogle Scholar
  2. Asha, H., de Ruiter, N.D., Wang, M.G., and Hariharan, I.K. (1999). The Rap1 GTPase functions as a regulator of morphogenesis in vivo. EMBO J 18, 605–615.CrossRefGoogle Scholar
  3. Bailly, E., and Bornens, M. (1992). Cell biology. Centrosome and cell division. Nature 355, 300–301.Google Scholar
  4. Béranger, F., Goud, B., Tavitian, A., and de Gunzburg, J. (1991). AAssociation of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc Natl Acad Sci U S A 88, 1606–1610.CrossRefGoogle Scholar
  5. Boettner, B., Govek, E.E., Cross, J., and Van Aelst, L. (2000). The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin. Proc Natl Acad Sci U S A 97, 9064–9069.CrossRefGoogle Scholar
  6. Borland, G., Gupta, M., Magiera, M.M., Rundell, C.J., Fuld, S., and Yarwood, S.J. (2006). Microtubule-associated protein 1B-light chain 1 enhances activation of Rap1 by exchange protein activated by cyclic AMP but not intracellular targeting. Mol Pharmacol 69, 374–384.Google Scholar
  7. Bos, J.L., de Rooij, J., and Reedquist, K.A. (2001). Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2, 369–377.CrossRefGoogle Scholar
  8. Brinkley, W. (1997). Microtubules: a brief historical perspective. J Struct Biol 118, 84–86.CrossRefGoogle Scholar
  9. Burney, T.L., Rockove, S., Eiseman, J.L., Jacobs, S.C., and Kyprianou, N. (1994). Partial growth suppression of human prostate cancer cells by the Krev-1 suppressor gene. Prostate 25, 177–188.CrossRefGoogle Scholar
  10. Chou, Y.H., Flitney, F.W., Chang, L., Mendez, M., Grin, B., and Goldman, R.D. (2007). The motility and dynamic properties of intermediate filaments and their constituent proteins. Exp Cell Res 313, 2236–2243.CrossRefGoogle Scholar
  11. D’silva, N.J., Jacobson, K.L., Ott, S.M., and Watson, E.L. (1998). Beta-adrenergic-induced cytosolic redistribution of Rap1 in rat parotid acini: role in secretion. Am J Physiol 274, C1667–C1673.Google Scholar
  12. Dallol, A., Agathanggelou, A., Fenton, S.L., Ahmed-Choudhury, J., Hesson, L., Vos, M.D., Clark, G.J., Downward, J., Maher, E.R., and Latif, F. (2004). RASSF1A interacts with microtubule-associated proteins and modulates microtubule dynamics. Cancer Res 64, 4112–4116.CrossRefGoogle Scholar
  13. Damak, S., Harnboonsong, Y., George, P.M., and Bullock, D.W. (1996). Expression of human Krev-1 gene in lungs of transgenic mice and subsequent reduction in multiplicity of ethyl carbamateinduced lung adenomas. Mol Carcinog 17, 84–91.CrossRefGoogle Scholar
  14. Dammann, R., Li, C., Yoon, J.H., Chin, P.L., Bates, S., and Pfeifer, G. P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumor suppressor locus 3p21.3. Nat Genet 25, 315–319.CrossRefGoogle Scholar
  15. Dammann, R., Schagdarsurengin, U., Seidel, C., Strunnikova, M., Rastetter, M., Baier, K., and Pfeifer, G.P. (2005). The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 20, 645–663.Google Scholar
  16. Downing, K.H. (2000). Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16, 89–111.CrossRefGoogle Scholar
  17. Franke, B., Akkerman, J.W., and Bos, J.L. (1997). Rapid Ca2 +- mediated activation of Rap1 in human platelets. EMBO J 16, 252–259.CrossRefGoogle Scholar
  18. Gupta, M., and Yarwood, S.J. (2005). MAP1A light chain 2 interacts with exchange protein activated by cyclic AMP 1 (EPAC1) to enhance Rap1 GTPase activity and cell adhesion. J Biol Chem 280, 8109–8116.CrossRefGoogle Scholar
  19. Hariharan, I.K., Carthew, R.W., and Rubin, G.M. (1991). The Drosophila roughened mutation: activation of a rap homolog disrupts eye development and interferes with cell determination. Cell 67, 717–722.CrossRefGoogle Scholar
  20. Herrmann, C., Horn, G., Spaargaren, M., and Wittinghofer, A. (1996). Differential interaction of the ras family GTP-binding proteins HRas, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271, 6794–6800.CrossRefGoogle Scholar
  21. Hogue, C.W. (1997). Cn3D: a new generation of three-dimensional molecular structure viewer. Trends Biochem Sci 22, 314–316.CrossRefGoogle Scholar
  22. Huang, L., Weng, X., Hofer, F., Martin, G.S., and Kim, S.H. (1997). Three-dimensional structure of the Ras-interacting domain of RalGDS. Nat Struct Biol 4, 609–615.CrossRefGoogle Scholar
  23. Jelinek, M.A., and Hassell, J.A. (1992). Reversion of middle T antigen-transformed Rat-2 cells by Krev-1: implications for the role of p21c-ras in polyomavirus-mediated transformation. Oncogene 7, 1687–1698.Google Scholar
  24. Katagiri, K., Imamura, M., and Kinashi, T. (2006). Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 7, 919–928.CrossRefGoogle Scholar
  25. Katagiri, K., Maeda, A., Shimonaka, M., and Kinashi, T. (2003). RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 4, 741–748.CrossRefGoogle Scholar
  26. Khokhlatchev, A., Rabizadeh, S., Xavier, R., Nedwidek, M., Chen, T., Zhang, X.F., Seed, B., and Avruch, J. (2002). Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 12, 253–265.CrossRefGoogle Scholar
  27. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M. (1989). A ras-related gene with transformation suppressor activity. Cell 56, 77–84.CrossRefGoogle Scholar
  28. Koradi, R., Billeter, M., and Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14, 51–55, 29–32.CrossRefGoogle Scholar
  29. Lafuente, E.M., van Puijenbroek, A.A., Krause, M., Carman, C.V., Freeman, G.J., Berezovskaya, A., Constantine, E., Springer, T.A., Gertler, F.B., and Boussiotis, V.A. (2004). RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell 7, 585–595.CrossRefGoogle Scholar
  30. Lapetina, E.G., Lacal, J.C., Reep, B.R., and Molina y Vedia, L. (1989). A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci U S A 86, 3131–3134.CrossRefGoogle Scholar
  31. Leach, S.D., Berger, D.H., Davidson, B.S., Curley, S.A., and Tainsky, M.A. (1998). Enhanced Krev-1 expression inhibits the growth of pancreatic adenocarcinoma cells. Pancreas 16, 491–498.CrossRefGoogle Scholar
  32. Lerman, M.I., and Minna, J.D. (2000). The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 60, 6116–6133.Google Scholar
  33. Liao, G., and Gundersen, G.G. (1998). Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem 273, 9797–9803.CrossRefGoogle Scholar
  34. Liu, L., Tommasi, S., Lee, D.H., Dammann, R., and Pfeifer, G.P. (2003). Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22, 8125–8136.CrossRefGoogle Scholar
  35. Liu, Z., Vong, Q.P., and Zheng, Y. (2007). CLASPing microtubules at the trans-Golgi network. Dev Cell 12, 839–840.CrossRefGoogle Scholar
  36. Maridonneau-Parini, I., and de Gunzburg, J. (1992). Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J Biol Chem 267, 6396–6402.Google Scholar
  37. Mitra, R.S., Zhang, Z., Henson, B.S., Kurnit, D.M., Carey, T.E., and D’silva, N.J. (2003). Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene 22, 6243–6256.CrossRefGoogle Scholar
  38. Mochizuki, N., Yamashita, S., Kurokawa, K., Ohba, Y., Nagai, T., Miyawaki, A., and Matsuda, M. (2001). Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068.CrossRefGoogle Scholar
  39. Mollinedo, F., and Gajate, C. (2003). Microtubules, microtubuleinterfering agents and apoptosis. Apoptosis 8, 413–450.CrossRefGoogle Scholar
  40. Nassar, N., Horn, G., Herrmann, C., Block, C., Janknecht, R., and Wittinghofer, A. (1996). Ras/Rap effector specificity determined by charge reversal. Nat Struct Biol 3, 723–729.CrossRefGoogle Scholar
  41. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995). The 2.2 A crystal structure of the Rasbinding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560.CrossRefGoogle Scholar
  42. Pizon, V., Desjardins, M., Bucci, C., Parton, R.G., and Zerial, M. (1994). Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J Cell Sci 107, 1661–1670.Google Scholar
  43. Polesello, C., Huelsmann, S., Brown, N.H., and Tapon, N. (2006). The Drosophila RASSF homolog antagonizes the hippo pathway. Curr Biol 16, 2459–2465.CrossRefGoogle Scholar
  44. Prahlad, V., Yoon, M., Moir, R.D., Vale, R.D., and Goldman, R.D. (1998). Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol 143, 159–170.CrossRefGoogle Scholar
  45. Quinn, M.T., Mullen, M.L., Jesaitis, A.J., and Linner, J.G. (1992). Subcellular distribution of the Rap1A protein in human neutrophils: colocalization and cotranslocation with cytochrome b559. Blood 79, 1563–1573.Google Scholar
  46. Robbins, E., and Gonatas, N.K. (1964). The Ultrastructure of a Mammalian Cell During the Mitotic Cycle. J Cell Biol 21, 429–463.CrossRefGoogle Scholar
  47. Rong, R., Jin, W., Zhang, J., Sheikh, M.S., and Huang, Y. (2004). Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene 23, 8216–8230.CrossRefGoogle Scholar
  48. Sato, K.Y., Polakis, P.G., Haubruck, H., Fasching, C.L., McCormick, F., and Stanbridge, E.J. (1994). Analysis of the tumor suppressor activity of the K-rev-1 gene in human tumor cell lines. Cancer Res 54, 552–559.Google Scholar
  49. Sekido, Y., Ahmadian, M., Wistuba, I.I., Latif, F., Bader, S., Wei, M.H., Duh, F.M., Gazdar, A.F., Lerman, M.I., and Minna, J.D. (1998). Cloning of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3 tumor suppressor gene. Oncogene 16, 3151–3157.CrossRefGoogle Scholar
  50. Shindyalov, I.N., and Bourne, P.E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11, 739–747.CrossRefGoogle Scholar
  51. Shivakumar, L., Minna, J., Sakamaki, T., Pestell, R., and White, M.A. (2002). The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 22, 4309–4318.CrossRefGoogle Scholar
  52. Song, M.S., Song, S.J., Ayad, N.G., Chang, J.S., Lee, J.H., Hong, H. K., Lee, H., Choi, N., Kim, J., Kim, H., et al. (2004). The tumor suppressor RASSF1A regulates mitosis by inhibiting the APCCdc20 complex. Nat Cell Biol 6, 129–137.CrossRefGoogle Scholar
  53. Thyberg, J., and Moskalewski, S. (1985). Microtubules and the organization of the Golgi complex. Exp Cell Res 159, 1–16.CrossRefGoogle Scholar
  54. Thyberg, J., and Moskalewski, S. (1999). Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246, 263–279.CrossRefGoogle Scholar
  55. Tommasi, S., Dammann, R., Zhang, Z., Wang, Y., Liu, L., Tsark, W.M., Wilczynski, S.P., Li, J., You, M., and Pfeifer, G.P. (2005). Tumor susceptibility of Rassf1a knockout mice. Cancer Res 65, 92–98.Google Scholar
  56. Verma, S.K., Ganesan, T.S., and Parker, P.J. (2008). The tumor suppressor RASSF1A is a novel substrate of PKC. FEBS Lett 582, 2270–2276.CrossRefGoogle Scholar
  57. Vetter, I.R., Linnemann, T., Wohlgemuth, S., Geyer, M., Kalbitzer, H. R., Herrmann, C., and Wittinghofer, A. (1999). Structural and biochemical analysis of Ras-effector signaling via RalGDS. FEBS Lett 451, 175–180.CrossRefGoogle Scholar
  58. Vos, M.D., Ellis, C.A., Bell, A., Birrer, M.J., and Clark, G.J. (2000). Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275, 35669–35672.CrossRefGoogle Scholar
  59. Zhang, Z., Rehmann, H., Price, L.S., Riedl, J., and Bos, J.L. (2005). AF6 negatively regulates Rap1-induced cell adhesion. J Biol Chem 280, 33200–33205.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sunil K. Verma
    • 1
    • 2
    • 3
  • Trivadi S. Ganesan
    • 1
    • 2
  • Uday Kishore
    • 7
  • Peter J. Parker
    • 3
    • 4
  1. 1.Department of Medical Oncology, Medical Sciences DivisionThe University of OxfordOxfordUK
  2. 2.Ovarian Cancer Group, CRUK Molecular Oncology Laboratories, Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalHeadington, OxfordUK
  3. 3.Protein Phosphorylation Laboratory, London Research InstituteCRUK Lincoln’s Inn Fields LaboratoriesLondonUK
  4. 4.Kings College London, The Division of Cancer StudiesSection of Cancer Cell Biology and ImagingLondonUK
  5. 5.Center for Cellular and Molecular BiologyHyderabadIndia
  6. 6.Cancer Institute & Institute of Molecular MedicineAmrita Institute of Medical SciencesKeralaIndia
  7. 7.Center for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social CareBrunel UniversityUxbridgeWest London, UK

Personalised recommendations