Protein & Cell

, Volume 2, Issue 2, pp 128–140 | Cite as

Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts

  • Changhai TianEmail author
  • Yongxiang Wang
  • Lijun Sun
  • Kangmu Ma
  • Jialin C. ZhengEmail author
Research Article


Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a “memory” of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a “memory” of the central nervous system, which confers additional potential upon neuronal differentiation.


mouse astrocytes induced pluripotent stem cells neural progenitor cells neuronal differentiation 


  1. Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilić, J., Pekarik, V., Tiscornia, G., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276–1284.CrossRefGoogle Scholar
  2. Aoi, T., Yae, K., Nakagawa, M., Ichisaka, T., Okita, K., Takahashi, K., Chiba, T., and Yamanaka, S. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702.CrossRefGoogle Scholar
  3. Baumann, K. (2010). Stem cells: holding on to the memories. Nat Rev Mol Cell Biol 11, 601.CrossRefGoogle Scholar
  4. Blackburn, D., Sargsyan, S., Monk, P.N., and Shaw, P.J. (2009). Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia 57, 1251–1264.CrossRefGoogle Scholar
  5. Caldwell, M.A., He, X., Wilkie, N., Pollack, S., Marshall, G., Wafford, K.A., and Svendsen, C.N. (2001). Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 19, 475–479.CrossRefGoogle Scholar
  6. Carey, B.W., Markoulaki, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, M., and Jaenisch, R. (2009). Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A 106, 157–162.CrossRefGoogle Scholar
  7. Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A., and Lledo, P.M. (2003). Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6, 507–518.Google Scholar
  8. Fawcett, J.W. (1997). Astrocytic and neuronal factors affecting axon regeneration in the damaged central nervous system. Cell Tissue Res 290, 371–377.CrossRefGoogle Scholar
  9. Ghorpade, A., Holter, S., Borgmann, K., Persidsky, R., and Wu, L. (2003). HIV-1 and IL-1 beta regulate Fas ligand expression in human astrocytes through the NF-kappa B pathway. J Neuroimmunol 141, 141–149.CrossRefGoogle Scholar
  10. Ghosh, Z., Wilson, K.D., Wu, Y., Hu, S., Quertermous, T., and Wu, J. C. (2010). Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 5, e8975.CrossRefGoogle Scholar
  11. Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton, M.P., Steine, E.J., Cassady, J.P., Foreman, R., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264.CrossRefGoogle Scholar
  12. Hirsch, E.C., Breidert, T., Rousselet, E., Hunot, S., Hartmann, A., and Michel, P.P. (2003). The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991, 214–228.CrossRefGoogle Scholar
  13. Hu, Q., Friedrich, A.M., Johnson, L.V., and Clegg, D.O. (2010). Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells 28, 1981–1991.CrossRefGoogle Scholar
  14. Jain, M., Armstrong, R.J., Tyers, P., Barker, R.A., and Rosser, A.E. (2003). GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitro. Exp Neurol 182, 113–123.CrossRefGoogle Scholar
  15. Johe, K.K., Hazel, T.G., Muller, T., Dugich-Djordjevic, M.M., and McKay, R.D. (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10, 3129–3140.CrossRefGoogle Scholar
  16. Kim, J.B., Greber, B., Araúzo-Bravo, M.J., Meyer, J., Park, K.I., Zaehres, H., and Schöler, H.R. (2009a). Direct reprogramming of human neural stem cells by OCT4. Nature 461, 649–643.CrossRefGoogle Scholar
  17. Kim, J.B., Sebastiano, V., Wu, G., Araúzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., et al. (2009b). Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–419.CrossRefGoogle Scholar
  18. Kim, J.B., Zaehres, H., Araúzo-Bravo, M.J., and Schöler, H.R. (2009c). Generation of induced pluripotent stem cells from neural stem cells. Nat Protoc 4, 1464–1470.CrossRefGoogle Scholar
  19. Kim, J.B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Araúzo-Bravo, M.J., Ruau, D., Han, D.W., Zenke, M., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650.CrossRefGoogle Scholar
  20. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290.CrossRefGoogle Scholar
  21. Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M., and McKay, R.D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18, 675–679.CrossRefGoogle Scholar
  22. Lois, C., and Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.CrossRefGoogle Scholar
  23. Moon, J.H., Yoon, B.S., Kim, B., Park, G., Jung, H.Y., Maeng, I., Jun, E.K., Yoo, S.J., Kim, A., Oh, S., et al. (2008). Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1. Biochem Biophys Res Commun 371, 267–272.CrossRefGoogle Scholar
  24. Pereira, C.F., Terranova, R., Ryan, N.K., Santos, J., Morris, K.J., Cui, W., Merkenschlager, M., and Fisher, A.G. (2008). Heterokaryonbased reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet 4, e1000170.CrossRefGoogle Scholar
  25. Polo, J.M., Liu, S., Figueroa, M.E., Kulalert, W., Eminli, S., Tan, K.Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28, 848–855.CrossRefGoogle Scholar
  26. Ridet, J.L., Malhotra, S.K., Privat, A., and Gage, F.H. (1997). Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20, 570–577.CrossRefGoogle Scholar
  27. Rodríguez, J.J., Olabarria, M., Chvatal, A., and Verkhratsky, A. (2009). Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16, 378–385.CrossRefGoogle Scholar
  28. Sher, F., Boddeke, E., and Copray, S. (2011). Ezh2 expression in astrocytes induces their dedifferentiation toward neural stem cells. Cell Reprogram 13, 1–6.CrossRefGoogle Scholar
  29. Stadtfeld, M., Brennand, K., and Hochedlinger, K. (2008). Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18, 890–894.CrossRefGoogle Scholar
  30. Studer, L., Tabar, V., and McKay, R.D. (1998). Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1, 290–295.CrossRefGoogle Scholar
  31. Takahashi, K., Okita, K., Nakagawa, M., and Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2, 3081–3089.CrossRefGoogle Scholar
  32. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.CrossRefGoogle Scholar
  33. Tian, C., Gao, P., Zheng, Y., Yue, W., Wang, X., Jin, H., and Chen, Q. (2008). Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death. Cell Res 18, 458–471.CrossRefGoogle Scholar
  34. Utikal, J., Maherali, N., Kulalert, W., and Hochedlinger, K. (2009). Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122, 3502–3510.CrossRefGoogle Scholar
  35. Vicario-Abejón, C., Johe, K.K., Hazel, T.G., Collazo, D., and McKay, R.D. (1995). Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15, 105–114.CrossRefGoogle Scholar
  36. Vitvitsky, V., Thomas, M., Ghorpade, A., Gendelman, H.E., and Banerjee, R. (2006). A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281, 35785–35793.CrossRefGoogle Scholar
  37. Wakayama, T., Tabar, V., Rodriguez, I., Perry, A.C., Studer, L., and Mombaerts, P. (2001). Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743.CrossRefGoogle Scholar
  38. Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D.M., Jang, Y.Y., Dang, C.V., Spivak, J.L., Moliterno, A.R., and Cheng, L. (2009). Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114, 5473–5480.CrossRefGoogle Scholar
  39. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratory of Neuroimmunology and Regenerative TherapyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Departments of Pharmacology/Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Departments of Pathology/MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations