Protein & Cell

, Volume 1, Issue 12, pp 1073–1083 | Cite as

Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway

  • Liming Chen
  • Portia Gloria Loh
  • Haiwei SongEmail author


The control of organ size growth is one of the most fundamental aspects of life. In the past two decades, a highly conserved Hippo signaling pathway has been identified as a key molecular mechanism for governing organ size regulation. In the middle of this pathway is a kinase cascade that negatively regulates the downstream component Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ)/Yorkie through phosphorylation. Phosphorylation of YAP/TAZ/Yorkie promotes its cytoplasmic localization, leads to cell apoptosis and restricts organ size overgrowth. When the Hippo pathway is inactivated, YAP/TAZ/Yorkie translocates into the nucleus to bind to the transcription enhancer factor (TEAD/TEF) family of transcriptional factors to promote cell growth and proliferation. In this review, we will focus on the structural and functional studies on the downstream transcription factor TEAD and its coactivator YAP.


Hippo Yes-associated protein (YAP) transcription enhancer factor (TEAD) Yki phosphorylation crystal structure 


  1. Adélaïde, J., Finetti, P., Bekhouche, I., Repellini, L., Geneix, J., Sircoulomb, F., Charafe-Jauffret, E., Cervera, N., Desplans, J., Parzy, D., et al. (2007). Integrated profiling of basal and luminal breast cancers. Cancer Res 67, 11565–11575.PubMedGoogle Scholar
  2. Alarcón, C., Zaromytidou, A.I., Xi, Q., Gao, S., Yu, J., Fujisawa, S., Barlas, A., Miller, A.N., Manova-Todorova, K., Macias, M.J., et al. (2009). Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139, 757–769.PubMedGoogle Scholar
  3. Almstrup, K., Hoei-Hansen, C.E., Wirkner, U., Blake, J., Schwager, C., Ansorge, W., Nielsen, J.E., Skakkebaek, N.E., Rajpert-De Meyts, E., and Leffers, H. (2004). Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling. Cancer Res 64, 4736–4743.PubMedGoogle Scholar
  4. Anbanandam, A., Albarado, D.C., Nguyen, C.T., Halder, G., Gao, X., and Veeraraghavan, S. (2006). Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain. Proc Natl Acad Sci U S A 103, 17225–17230.PubMedGoogle Scholar
  5. Badouel, C., Gardano, L., Amin, N., Garg, A., Rosenfeld, R., Le Bihan, T., and McNeill, H. (2009). The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 16, 411–420.PubMedGoogle Scholar
  6. Baldwin, C., Garnis, C., Zhang, L., Rosin, M.P., and Lam, W.L. (2005). Multiple microalterations detected at high frequency in oral cancer. Cancer Res 65, 7561–7567.PubMedGoogle Scholar
  7. Barolo, S., and Posakony, J.W. (2002). Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 16, 1167–1181.PubMedGoogle Scholar
  8. Basu, S., Totty, N.F., Irwin, M.S., Sudol, M., and Downward, J. (2003). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11, 11–23.PubMedGoogle Scholar
  9. Bennett, F.C., and Harvey, K.F. (2006). Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol 16, 2101–2110.PubMedGoogle Scholar
  10. Bianchi, A.B., Hara, T., Ramesh, V., Gao, J., Klein-Szanto, A.J., Morin, F., Menon, A.G., Trofatter, J.A., Gusella, J.F., Seizinger, B. R., et al. (1994). Mutations in transcript isoforms of the neurofibromatosis 2 gene in multiple human tumour types. Nat Genet 6, 185–192.PubMedGoogle Scholar
  11. Camargo, F.D., Gokhale, S., Johnnidis, J.B., Fu, D., Bell, G.W., Jaenisch, R., and Brummelkamp, T.R. (2007). YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17, 2054–2060.PubMedGoogle Scholar
  12. Chan, S.W., Lim, C.J., Guo, K., Ng, C.P., Lee, I., Hunziker, W., Zeng, Q., and Hong, W. (2008). A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 68, 2592–2598.PubMedGoogle Scholar
  13. Chan, S.W., Lim, C.J., Loo, L.S., Chong, Y.F., Huang, C., and Hong, W. (2009). TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J Biol Chem 284, 14347–14358.PubMedGoogle Scholar
  14. Chen, L., Chan, S.W., Zhang, X., Walsh, M., Lim, C.J., Hong, W., and Song, H. (2010). Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev 24, 290–300.PubMedGoogle Scholar
  15. Cho, E., Feng, Y., Rauskolb, C., Maitra, S., Fehon, R., and Irvine, K.D. (2006). Delineation of a Fat tumor suppressor pathway. Nat Genet 38, 1142–1150.PubMedGoogle Scholar
  16. Conlon, I., and Raff, M. (1999). Size control in animal development. Cell 96, 235–244.PubMedGoogle Scholar
  17. Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S. A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133.PubMedGoogle Scholar
  18. Ehrbrecht, A., Müller, U., Wolter, M., Hoischen, A., Koch, A., Radlwimmer, B., Actor, B., Mincheva, A., Pietsch, T., Lichter, P., et al. (2006). Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208, 554–563.PubMedGoogle Scholar
  19. Feng, Y., and Irvine, K.D. (2007). Fat and expanded act in parallel to regulate growth through warts. Proc Natl Acad Sci U S A 104, 20362–20367.PubMedGoogle Scholar
  20. Fossdal, R., Jonasson, F., Kristjansdottir, G.T., Kong, A., Stefansson, H., Gosh, S., Gulcher, J.R., and Stefansson, K. (2004). A novel TEAD1 mutation is the causative allele in Sveinsson’s chorioretinal atrophy (helicoid peripapillary chorioretinal degeneration). Hum Mol Genet 13, 975–981.PubMedGoogle Scholar
  21. Genevet, A., Wehr, M.C., Brain, R., Thompson, B.J., and Tapon, N. (2010). Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 18, 300–308.PubMedGoogle Scholar
  22. Goulev, Y., Fauny, J.D., Gonzalez-Marti, B., Flagiello, D., Silber, J., and Zider, A. (2008). SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18, 435–441.PubMedGoogle Scholar
  23. Han, W., Jung, E.M., Cho, J., Lee, J.W., Hwang, K.T., Yang, S.J., Kang, J.J., Bae, J.Y., Jeon, Y.K., Park, I.A., et al. (2008). DNA copy number alterations and expression of relevant genes in triplenegative breast cancer. Genes Chromosomes Cancer 47, 490–499.PubMedGoogle Scholar
  24. Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496–5509.PubMedGoogle Scholar
  25. Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467.PubMedGoogle Scholar
  26. Hong, J.H., Hwang, E.S., McManus, M.T., Amsterdam, A., Tian, Y., Kalmukova, R., Mueller, E., Benjamin, T., Spiegelman, B.M., Sharp, P.A., et al. (2005). TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078.PubMedGoogle Scholar
  27. Hossain, Z., Ali, S.M., Ko, H.L., Xu, J., Ng, C.P., Guo, K., Qi, Z., Ponniah, S., Hong, W., and Hunziker, W. (2007). Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A 104, 1631–1636.PubMedGoogle Scholar
  28. Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434.PubMedGoogle Scholar
  29. Hucl, T., Brody, J.R., Gallmeier, E., Iacobuzio-Donahue, C.A., Farrance, I.K., and Kern, S.E. (2007). High cancer-specific expression of mesothelin (MSLN) is attributable to an upstream enhancer containing a transcription enhancer factor dependent MCAT motif. Cancer Res 67, 9055–9065.PubMedGoogle Scholar
  30. Jacquemin, P., Sapin, V., Alsat, E., Evain-Brion, D., Dollé, P., and Davidson, I. (1998). Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro. Dev Dyn 212, 423–436.PubMedGoogle Scholar
  31. Jeong, H., Bae, S., An, S.Y., Byun, M.R., Hwang, J.H., Yaffe, M.B., Hong, J.H., and Hwang, E.S. (2010). TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J 24, 3310–3320.PubMedGoogle Scholar
  32. Jiang, S.W., Desai, D., Khan, S., and Eberhardt, N.L. (2000). Cooperative binding of TEF-1 to repeated GGAATG-related consensus elements with restricted spatial separation and orientation. DNA Cell Biol 19, 507–514.PubMedGoogle Scholar
  33. Justice, R.W., Zilian, O., Woods, D.F., Noll, M., and Bryant, P.J. (1995). The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9, 534–546.PubMedGoogle Scholar
  34. Kanai, F., Marignani, P.A., Sarbassova, D., Yagi, R., Hall, R.A., Donowitz, M., Hisaminato, A., Fujiwara, T., Ito, Y., Cantley, L.C., et al. (2000). TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19, 6778–6791.PubMedGoogle Scholar
  35. Kaneko, K.J., Cullinan, E.B., Latham, K.E., and DePamphilis, M.L. (1997). Transcription factor mTEAD-2 is selectively expressed at the beginning of zygotic gene expression in the mouse. Development 124, 1963–1973.PubMedGoogle Scholar
  36. Kaneko, K.J., and DePamphilis, M.L. (1998). Regulation of gene expression at the beginning of mammalian development and the TEAD family of transcription factors. Dev Genet 22, 43–55.PubMedGoogle Scholar
  37. Kango-Singh, M., Nolo, R., Tao, C., Verstreken, P., Hiesinger, P.R., Bellen, H.J., and Halder, G. (2002). Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730.PubMedGoogle Scholar
  38. Kitagawa, M. (2007). A Sveinsson’s chorioretinal atrophy-associated missense mutation in mouse Tead1 affects its interaction with the co-factors YAP and TAZ. Biochem Biophys Res Commun 361, 1022–1026.PubMedGoogle Scholar
  39. Knight, J.F., Shepherd, C.J., Rizzo, S., Brewer, D., Jhavar, S., Dodson, A.R., Cooper, C.S., Eeles, R., Falconer, A., Kovacs, G., et al. (2008). TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. Br J Cancer 99, 1849–1858.PubMedGoogle Scholar
  40. Komuro, A., Nagai, M., Navin, N.E., and Sudol, M. (2003). WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278, 33334–33341.PubMedGoogle Scholar
  41. Kwon, S., Munroe, X., Crawley, S.C., Lee, H.Y., Spong, S., Bradham, D., Gum, J.R. Jr, Sleisenger, M.H., and Kim, Y.S. (2007). Expression of connective tissue growth factor in pancreatic cancer cell lines. Int J Oncol 31, 693–703.PubMedGoogle Scholar
  42. Lam-Himlin, D.M., Daniels, J.A., Gayyed, M.F., Dong, J., Maitra, A., Pan, D., Montgomery, E.A., and Anders, R.A. (2006). The hippo pathway in human upper gastrointestinal dysplasia and carcinoma: a novel oncogenic pathway. Int J Gastrointest Cancer 37, 103–109.PubMedGoogle Scholar
  43. Larkin, S.B., Farrance, I.K., and Ordahl, C.P. (1996). Flanking sequences modulate the cell specificity of M-CAT elements. Mol Cell Biol 16, 3742–3755.PubMedGoogle Scholar
  44. Lau, Y.K., Murray, L.B., Houshmandi, S.S., Xu, Y., Gutmann, D.H., and Yu, Q. (2008). Merlin is a potent inhibitor of glioma growth. Cancer Res 68, 5733–5742.PubMedGoogle Scholar
  45. Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28, 2426–2436.PubMedGoogle Scholar
  46. Li, Z., Zhao, B., Wang, P., Chen, F., Dong, Z., Yang, H., Guan, K.L., and Xu, Y. (2010). Structural insights into the YAP and TEAD complex. Genes Dev 24, 235–240.PubMedGoogle Scholar
  47. Liu, Y., Xin, Y., Ye, F., Wang, W., Lu, Q., Kaplan, H.J., and Dean, D.C. (2010). Taz-tead1 links cell-cell contact to zeb1 expression, proliferation, and dedifferentiation in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 51, 3372–3378.PubMedGoogle Scholar
  48. Makita, R., Uchijima, Y., Nishiyama, K., Amano, T., Chen, Q., Takeuchi, T., Mitani, A., Nagase, T., Yatomi, Y., Aburatani, H., et al. (2008). Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol 294, F542–F553.PubMedGoogle Scholar
  49. Modena, P., Lualdi, E., Facchinetti, F., Veltman, J., Reid, J.F., Minardi, S., Janssen, I., Giangaspero, F., Forni, M., Finocchiaro, G., et al. (2006). Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 24, 5223–5233.PubMedGoogle Scholar
  50. Morin-Kensicki, E.M., Boone, B.N., Howell, M., Stonebraker, J.R., Teed, J., Alb, J.G., Magnuson, T.R., O’Neal, W., and Milgram, S.L. (2006). Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol 26, 77–87.PubMedGoogle Scholar
  51. Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R.O., Ogonuki, N., et al. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16, 398–410.PubMedGoogle Scholar
  52. Nishioka, N., Yamamoto, S., Kiyonari, H., Sato, H., Sawada, A., Ota, M., Nakao, K., and Sasaki, H. (2008). Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125, 270–283.PubMedGoogle Scholar
  53. Nowee, M.E., Snijders, A.M., Rockx, D.A., de Wit, R.M., Kosma, V.M., Hämäläinen, K., Schouten, J.P., Verheijen, R.H., van Diest, P.J., Albertson, D.G., et al. (2007). DNA profiling of primary serous ovarian and fallopian tube carcinomas with array comparative genomic hybridization and multiplex ligation-dependent probe amplification. J Pathol 213, 46–55.PubMedGoogle Scholar
  54. Oh, H., and Irvine, K.D. (2008). In vivo regulation of Yorkie phosphorylation and localization. Development 135, 1081–1088.PubMedGoogle Scholar
  55. Oh, H., and Irvine, K.D. (2009). In vivo analysis of Yorkie phosphorylation sites. Oncogene 28, 1916–1927.PubMedGoogle Scholar
  56. Oh, H., Reddy, B.V., and Irvine, K.D. (2009). Phosphorylationindependent repression of Yorkie in Fat-Hippo signaling. Dev Biol 335, 188–197.PubMedGoogle Scholar
  57. Ohnishi, S., Güntert, P., Koshiba, S., Tomizawa, T., Akasaka, R., Tochio, N., Sato, M., Inoue, M., Harada, T., Watanabe, S., et al. (2007). Solution structure of an atypical WW domain in a novel beta-clam-like dimeric form. FEBS Lett 581, 462–468.PubMedGoogle Scholar
  58. Omerovic, J., Puggioni, E.M., Napoletano, S., Visco, V., Fraioli, R., Frati, L., Gulino, A., and Alimandi, M. (2004). Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Exp Cell Res 294, 469–479.PubMedGoogle Scholar
  59. Ota, M., and Sasaki, H. (2008). Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059–4069.PubMedGoogle Scholar
  60. Overholtzer, M., Zhang, J., Smolen, G.A., Muir, B., Li, W., Sgroi, D.C., Deng, C.X., Brugge, J.S., and Haber, D.A. (2006). Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 103, 12405–12410.PubMedGoogle Scholar
  61. Pan, D. (2007). Hippo signaling in organ size control. Genes Dev 21, 886–897.PubMedGoogle Scholar
  62. Pantalacci, S., Tapon, N., and Léopold, P. (2003). The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5, 921–927.PubMedGoogle Scholar
  63. Polyak, K., and Weinberg, R.A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9, 265–273.PubMedGoogle Scholar
  64. Praskova, M., Xia, F., and Avruch, J. (2008). MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18, 311–321.PubMedGoogle Scholar
  65. Ren, F., Zhang, L., and Jiang, J. (2010). Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol 337, 303–312.PubMedGoogle Scholar
  66. Richardson, A.L., Wang, Z.C., De Nicolo, A., Lu, X., Brown, M., Miron, A., Liao, X., Iglehart, J.D., Livingston, D.M., and Ganesan, S. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9, 121–132.PubMedGoogle Scholar
  67. Rodriguez, S., Khabir, A., Keryer, C., Perrot, C., Drira, M., Ghorbel, A., Jlidi, R., Bernheim, A., Valent, A., and Busson, P. (2005). Conventional and array-based comparative genomic hybridization analysis of nasopharyngeal carcinomas from the Mediterranean area. Cancer Genet Cytogenet 157, 140–147.PubMedGoogle Scholar
  68. Sawada, A., Kiyonari, H., Ukita, K., Nishioka, N., Imuta, Y., and Sasaki, H. (2008). Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol 28, 3177–3189.PubMedGoogle Scholar
  69. Scheel, H., and Hofmann, K. (2003). A novel interaction motif, SARAH, connects three classes of tumor suppressor. Curr Biol 13, R899–R900.PubMedGoogle Scholar
  70. Shimizu, T., Seto, A., Maita, N., Hamada, K., Tsukita, S., Tsukita, S., and Hakoshima, T. (2002). Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J Biol Chem 277, 10332–10336.PubMedGoogle Scholar
  71. Silva, E., Tsatskis, Y., Gardano, L., Tapon, N., and McNeill, H. (2006). The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol 16, 2081–2089.PubMedGoogle Scholar
  72. Singh, B., Gogineni, S.K., Sacks, P.G., Shaha, A.R., Shah, J.P., Stoffel, A., and Rao, P.H. (2001). Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification. Cancer Res 61, 4506–4513.PubMedGoogle Scholar
  73. Skotheim, R.I., Autio, R., Lind, G.E., Kraggerud, S.M., Andrews, P.W., Monni, O., Kallioniemi, O., and Lothe, R.A. (2006). Novel genomic aberrations in testicular germ cell tumors by array-CGH, and associated gene expression changes. Cell Oncol 28, 315–326.PubMedGoogle Scholar
  74. Snijders, A.M., Schmidt, B.L., Fridlyand, J., Dekker, N., Pinkel, D., Jordan, R.C., and Albertson, D.G. (2005). Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 24, 4232–4242.PubMedGoogle Scholar
  75. Stavridi, E.S., Harris, K.G., Huyen, Y., Bothos, J., Verwoerd, P.M., Stayrook, S.E., Pavletich, N.P., Jeffrey, P.D., and Luca, F.C. (2003). Crystal structure of a human Mob1 protein: toward understanding Mob-regulated cell cycle pathways. Structure 11, 1163–1170.PubMedGoogle Scholar
  76. Steinhardt, A.A., Gayyed, M.F., Klein, A.P., Dong, J., Maitra, A., Pan, D., Montgomery, E.A., and Anders, R.A. (2008). Expression of Yes-associated protein in common solid tumors. Hum Pathol 39, 1582–1589.PubMedGoogle Scholar
  77. Strano, S., Munarriz, E., Rossi, M., Castagnoli, L., Shaul, Y., Sacchi, A., Oren, M., Sudol, M., Cesareni, G., and Blandino, G. (2001). Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 276, 15164–15173.PubMedGoogle Scholar
  78. Tapon, N., Harvey, K.F., Bell, D.W., Wahrer, D.C., Schiripo, T.A., Haber, D.A., and Hariharan, I.K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478.PubMedGoogle Scholar
  79. Tian, W., Yu, J., Tomchick, D.R., Pan, D., and Luo, X. (2010). Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci U S A 107, 7293–7298.PubMedGoogle Scholar
  80. Tyler, D.M., and Baker, N.E. (2007). Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev Biol 305, 187–201.PubMedGoogle Scholar
  81. Udan, R.S., Kango-Singh, M., Nolo, R., Tao, C., and Halder, G. (2003). Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5, 914–920.PubMedGoogle Scholar
  82. Varelas, X., Miller, B.W., Sopko, R., Song, S., Gregorieff, A., Fellouse, F.A., Sakuma, R., Pawson, T., Hunziker, W., McNeill, H., et al. (2010). The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell 18, 579–591.PubMedGoogle Scholar
  83. Vassilev, A., Kaneko, K.J., Shu, H., Zhao, Y., and DePamphilis, M.L. (2001). TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15, 1229–1241.PubMedGoogle Scholar
  84. Wang, Y., Dong, Q., Zhang, Q., Li, Z., Wang, E., and Qiu, X. (2010). Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci 101, 1279–1285.PubMedGoogle Scholar
  85. Weber, R.G., Sabel, M., Reifenberger, J., Sommer, C., Oberstrass, J., Reifenberger, G., Kiessling, M., and Cremer, T. (1996). Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene 13, 983–994.PubMedGoogle Scholar
  86. Willecke, M., Hamaratoglu, F., Kango-Singh, M., Udan, R., Chen, C. L., Tao, C., Zhang, X., and Halder, G. (2006). The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 16, 2090–2100.PubMedGoogle Scholar
  87. Wu, S., Huang, J., Dong, J., and Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456.PubMedGoogle Scholar
  88. Wu, S., Liu, Y., Zheng, Y., Dong, J., and Pan, D. (2008). The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14, 388–398.PubMedGoogle Scholar
  89. Xu, T., Wang, W., Zhang, S., Stewart, R.A., and Yu, W. (1995). Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063.PubMedGoogle Scholar
  90. Yagi, R., Chen, L.F., Shigesada, K., Murakami, Y., and Ito, Y. (1999). A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18, 2551–2562.PubMedGoogle Scholar
  91. Yagi, R., Kohn, M.J., Karavanova, I., Kaneko, K.J., Vullhorst, D., DePamphilis, M.L., and Buonanno, A. (2007). Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836.PubMedGoogle Scholar
  92. Yockey, C.E., Smith, G., Izumo, S., and Shimizu, N. (1996). cDNA cloning and characterization of murine transcriptional enhancer factor-1-related protein 1, a transcription factor that binds to the MCAT motif. J Biol Chem 271, 3727–3736.PubMedGoogle Scholar
  93. Yokoyama, T., Osada, H., Murakami, H., Tatematsu, Y., Taniguchi, T., Kondo, Y., Yatabe, Y., Hasegawa, Y., Shimokata, K., Horio, Y., et al. (2008). YAP1 is involved in mesothelioma development and negatively regulated by Merlin through phosphorylation. Carcinogenesis 29, 2139–2146.PubMedGoogle Scholar
  94. Yu, J., Zheng, Y., Dong, J., Klusza, S., Deng, W.M., and Pan, D. (2010). Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18, 288–299.PubMedGoogle Scholar
  95. Zender, L., Spector, M.S., Xue, W., Flemming, P., Cordon-Cardo, C., Silke, J., Fan, S.T., Luk, J.M., Wigler, M., Hannon, G.J., et al. (2006). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267.PubMedGoogle Scholar
  96. Zeng, Q., and Hong, W. (2008). The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13, 188–192.PubMedGoogle Scholar
  97. Zhang, H., Liu, C.Y., Zha, Z.Y., Zhao, B., Yao, J., Zhao, S., Xiong, Y., Lei, Q.Y., and Guan, K.L. (2009). TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 284, 13355–13362.PubMedGoogle Scholar
  98. Zhang, L., Ren, F., Zhang, Q., Chen, Y., Wang, B., and Jiang, J. (2008). The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14, 377–387.PubMedGoogle Scholar
  99. Zhao, B., Li, L., Lei, Q., and Guan, K.L. (2010). The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24, 862–874.PubMedGoogle Scholar
  100. Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747–2761.PubMedGoogle Scholar
  101. Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C. Y., Chinnaiyan, A.M., et al. (2008). TEAD mediates YAPdependent gene induction and growth control. Genes Dev 22, 1962–1971.PubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Liming Chen
    • 1
  • Portia Gloria Loh
    • 1
  • Haiwei Song
    • 1
    • 2
    • 3
    Email author
  1. 1.Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell BiologyA*STAR (Agency for Science, Technology and Research)SingaporeRepublic of Singapore
  2. 2.Department of Biological SciencesNational University of SingaporeSingaporeRepublic of Singapore
  3. 3.School of Biological SciencesNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations