Protein & Cell

, Volume 1, Issue 10, pp 907–915 | Cite as

The late stage of autophagy: cellular events and molecular regulation

  • Jingjing Tong
  • Xianghua Yan
  • Li YuEmail author


Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a “self-eating” process and plays a “house-cleaner” role in cells. The complex process consists of several sequential steps—induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized.


autophagy autophagosome lysosome fusion degradation 


  1. Aplin, A., Jasionowski, T., Tuttle, D.L., Lenk, S.E., and Dunn, W.A. Jr. (1992). Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol 152, 458–466.Google Scholar
  2. Atlashkin, V., Kreykenbohm, V., Eskelinen, E.-L., Wenzel, D., Fayyazi, A., and Fischer von Mollard, G. (2003). Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Mol Cell Biol 23, 5198–5207.Google Scholar
  3. Axe, E.L., Walker, S.A., Manifava, M., Chandra, P., Roderick, H.L., Habermann, A., Griffiths, G., and Ktistakis, N.T. (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182, 685–701.Google Scholar
  4. Bache, K.G., Raiborg, C., Mehlum, A., Madshus, I.H., and Stenmark, H. (2002). Phosphorylation of Hrs downstream of the epidermal growth factor receptor. Eur J Biochem 269, 3881–3887.Google Scholar
  5. Block, M.R., Glick, B.S., Wilcox, C.A., Wieland, F.T., and Rothman, J. E. (1988). Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc Natl Acad Sci U S A 85, 7852–7856.Google Scholar
  6. Cai, H., Reinisch, K., and Ferro-Novick, S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12, 671–682.Google Scholar
  7. Callebaut, I., de Gunzburg, J., Goud, B., and Mornon, J.P. (2001). RUN domains: a new family of domains involved in Ras-like GTPase signaling. Trends Biochem Sci 26, 79–83.Google Scholar
  8. Cao, X., and Barlowe, C. (2000). Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes. J Cell Biol 149, 55–66.Google Scholar
  9. Crighton, D., Wilkinson, S., O’Prey, J., Syed, N., Smith, P., Harrison, P.R., Gasco, M., Garrone, O., Crook, T., and Ryan, K.M. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134.Google Scholar
  10. Darsow, T., Rieder, S.E., and Emr, S.D. (1997). A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138, 517–529.Google Scholar
  11. Dulubova, I., Yamaguchi, T., Wang, Y., Südhof, T.C., and Rizo, J. (2001). Vam3p structure reveals conserved and divergent properties of syntaxins. Nat Struct Biol 8, 258–264.Google Scholar
  12. Egami, Y., Kiryu-Seo, S., Yoshimori, T., and Kiyama, H. (2005). Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons. Biochem Biophys Res Commun 337, 1206–1213.Google Scholar
  13. Epple, U.D., Suriapranata, I., Eskelinen, E.-L., and Thumm, M. (2001). Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 183, 5942–5955.Google Scholar
  14. Epple, U.D., Eskelinen, E.L., and Thumm, M. (2003). Intravacuolar membrane lysis in Saccharomyces cerevisiae. Does vacuolar targeting of Cvt17/Aut5p affect its function? J Biol Chem 278, 7810–7821.Google Scholar
  15. Eskelinen, E.L. (2005). Maturation of autophagic vacuoles in mammalian cells. Autophagy 1, 1–10.Google Scholar
  16. Eskelinen, E.L., Tanaka, Y., and Saftig, P. (2003). At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13, 137–145.Google Scholar
  17. Eskelinen, E.L., Schmidt, C.K., Neu, S., Willenborg, M., Fuertes, G., Salvador, N., Tanaka, Y., Lüllmann-Rauch, R., Hartmann, D., Heeren, J., et al. (2004). Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 15, 3132–3145.Google Scholar
  18. Fader, C.M., Sánchez, D., Furlán, M., and Colombo, M.I. (2008). Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9, 230–250.Google Scholar
  19. Fass, E., Shvets, E., Degani, I., Hirschberg, K., and Elazar, Z. (2006). Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 281, 36303–36316.Google Scholar
  20. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241–4257.Google Scholar
  21. Gill, S.R., Schroer, T.A., Szilak, I., Steuer, E.R., Sheetz, M.P., and Cleveland, D.W. (1991). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 115, 1639–1650.Google Scholar
  22. Gutierrez, M.G., Munafó, D.B., Berón, W., and Colombo, M.I. (2004). Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117, 2687–2697.Google Scholar
  23. Hamasaki, M., and Yoshimori, T. (2010). Where do they come from? Insight into autophagosome formation. FEBS Lett 584, 1296–1301.Google Scholar
  24. Hayakawa, A., Hayes, S.J., Lawe, D.C., Sudharshan, E., Tuft, R., Fogarty, K., Lambright, D., and Corvera, S. (2004). Structural basis for endosomal targeting by FYVE domains. J Biol Chem 279, 5958–5966.Google Scholar
  25. Huynh, K.K., Eskelinen, E.L., Scott, C.C., Malevanets, A., Saftig, P., and Grinstein, S. (2007). LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 26, 313–324.Google Scholar
  26. Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T., and Fukuda, M. (2008). Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 19, 2916–2925.Google Scholar
  27. Jäger, S., Bucci, C., Tanida, I., Ueno, T., Kominami, E., Saftig, P., and Eskelinen, E.L. (2004). Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117, 4837–4848.Google Scholar
  28. Jahn, R., and Scheller, R.H. (2006). SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7, 631–643.Google Scholar
  29. Jahreiss, L., Menzies, F.M., and Rubinsztein, D.C. (2008). The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9, 574–587.Google Scholar
  30. Kanazawa, C., Morita, E., Yamada, M., Ishii, N., Miura, S., Asao, H., Yoshimori, T., and Sugamura, K. (2003). Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation. Biochem Biophys Res Commun 309, 848–856.Google Scholar
  31. Kimura, S., Noda, T., and Yoshimori, T. (2008). Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33, 109–122.Google Scholar
  32. Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7–18.Google Scholar
  33. Klionsky, D.J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8, 931–937.Google Scholar
  34. Kouno, T., Mizuguchi, M., Tanida, I., Ueno, T., Kanematsu, T., Mori, Y., Shinoda, H., Hirata, M., Kominami, E., and Kawano, K. (2005). Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains. J Biol Chem 280, 24610–24617.Google Scholar
  35. Kucharczyk, R., Dupre, S., Avaro, S., Haguenauer-Tsapis, R., Słonimski, P.P., and Rytka, J. (2000). The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p. J Cell Sci 113, 4301–4311.Google Scholar
  36. Kucharczyk, R., Kierzek, A.M., Slonimski, P.P., and Rytka, J. (2001). The Ccz1 protein interacts with Ypt7 GTPase during fusion of multiple transport intermediates with the vacuole in S. cerevisiae. J Cell Sci 114, 3137–3145.Google Scholar
  37. Kutateladze, T.G. (2006). Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochim Biophys Acta 1761, 868–877.Google Scholar
  38. Lakadamyali, M., Rust, M.J., Babcock, H.P., and Zhuang, X. (2003). Visualizing infection of individual influenza viruses. Proc Natl Acad Sci U S A 100, 9280–9285.Google Scholar
  39. Langosch, D., Hofmann, M., and Ungermann, C. (2007). The role of transmembrane domains in membrane fusion. Cell Mol Life Sci 64, 850–864.Google Scholar
  40. Lee, J.A., Beigneux, A., Ahmad, S.T., Young, S.G., and Gao, F.B. (2007). ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 17, 1561–1567.Google Scholar
  41. Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B.H., and Jung, J.U. (2006). Autophagic and tumour suppressor activity of a novel Beclin 1-binding protein UVRAG. Nat Cell Biol 8, 688–699.Google Scholar
  42. Liang, C., Feng, P., Ku, B., Oh, B.H., Jung, J.U., Oh, B., and Jung, J. (2007). UVRAG: a new player in autophagy and tumor cell growth. Autophagy 3, 69–71.Google Scholar
  43. Liang, C., Lee, J.S., Inn, K.S., Gack, M.U., Li, Q., Roberts, E.A., Vergne, I., Deretic, V., Feng, P., Akazawa, C., et al. (2008a). Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10, 776–787.Google Scholar
  44. Liang, C., Sir, D., Lee, S., Ou, J.H., and Jung, J.U. (2008b). Beyond autophagy: the role of UVRAG in membrane trafficking. Autophagy 4, 817–820.Google Scholar
  45. Lindmo, K., Simonsen, A., Brech, A., Finley, K., Rusten, T.E., and Stenmark, H. (2006). A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body. Exp Cell Res 312, 2018–2027.Google Scholar
  46. Lloyd, J.B. (1996). Metabolite efflux and influx across the lysosome membrane. Subcell Biochem 27, 361–386.Google Scholar
  47. Lloyd, T.E., Atkinson, R., Wu, M.N., Zhou, Y., Pennetta, G., and Bellen, H.J. (2002). Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108, 261–269.Google Scholar
  48. Longatti, A., and Tooze, S.A. (2009). Vesicular trafficking and autophagosome formation. Cell Death Differ 16, 956–965.Google Scholar
  49. Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils from protein sequences. Science 252, 1162–1164.Google Scholar
  50. Mann, S.S., and Hammarback, J.A. (1994). Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 269, 11492–11497.Google Scholar
  51. Marchler-Bauer, A., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., et al. (2009). CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37, D205–D210.Google Scholar
  52. Marino, Z., and Heidi, M. (2001). Rab proteins as membrane prganizers. Natl Rev 2, 107–118.Google Scholar
  53. Mechler, B., and Wolf, D.H. (1981). Analysis of proteinase A function in yeast. Eur J Biochem 121, 47–52.Google Scholar
  54. Mehrpour, M., Esclatine, A., Beau, I., and Codogno, P. (2010). Overview of macroautophagy regulation in mammalian cells. Cell Res 20, 748–762.Google Scholar
  55. Mesa, R., Salomón, C., Roggero, M., Stahl, P.D., and Mayorga, L.S. (2001). Rab22a affects the morphology and function of the endocytic pathway. J Cell Sci 114, 4041–4049.Google Scholar
  56. Mima, J., Hickey, C.M., Xu, H., Jun, Y., and Wickner, W. (2008). Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J 27, 2031–2042.Google Scholar
  57. Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861–2873.Google Scholar
  58. Munafó, D.B., and Colombo, M.I. (2002). Induction of autophagy causes dramatic changes in the subcellular distribution of GFPRab24. Traffic 3, 472–482.Google Scholar
  59. Nakamura, N., Matsuura, A., Wada, Y., and Ohsumi, Y. (1997). Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem 121, 338–344.Google Scholar
  60. Nakatogawa, H., Suzuki, K., Kamada, Y., and Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458–467.Google Scholar
  61. Nara, A., Mizushima, N., Yamamoto, A., Kabeya, Y., Ohsumi, Y., and Yoshimori, T. (2002). SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct Funct 27, 29–37.Google Scholar
  62. Nichols, B.J., Ungermann, C., Pelham, H.R.B., Wickner, W.T., and Haas, A. (1997). Homotypic vacuolar fusion mediated by t- and v- SNAREs. Nature 387, 199–202.Google Scholar
  63. Novick, P., and Zerial, M. (1997). The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 9, 496–504.Google Scholar
  64. Odorizzi, G., Babst, M., and Emr, S.D. (1998). Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858.Google Scholar
  65. Odorizzi, G., Babst, M., and Emr, S.D. (2000). Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 25, 229–235.Google Scholar
  66. Olkkonen, V.M., Dupree, P., Killisch, I., Lütcke, A., Zerial, M., and Simons, K. (1993). Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily. J Cell Sci 106, 1249–1261.Google Scholar
  67. Pankiv, S., Alemu, E.A., Brech, A., Bruun, J.A., Lamark, T., Overvatn, A., Bjørkøy, G., and Johansen, T. (2010). FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus enddirected vesicle transport. J Cell Biol 188, 253–269.Google Scholar
  68. Parlati, F., McNew, J.A., Fukuda, R., Miller, R., Söllner, T.H., and Rothman, J.E. (2000). Topological restriction of SNARE-dependent membrane fusion. Nature 407, 194–198.Google Scholar
  69. Parr, C.L., Keates, R.A., Bryksa, B.C., Ogawa, M., and Yada, R.Y. (2007). The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 24, 467–480.Google Scholar
  70. Peplowska, K., Cabrera, M., and Ungermann, C. (2008). UVRAG reveals its second nature. Nat Cell Biol 10, 759–761.Google Scholar
  71. Price, A., Seals, D., Wickner, W., and Ungermann, C. (2000a). The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol 148, 1231–1238.Google Scholar
  72. Price, A., Wickner, W., and Ungermann, C. (2000b). Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion. J Cell Biol 148, 1223–1229.Google Scholar
  73. Pulipparacharuvil, S., Akbar, M.A., Ray, S., Sevrioukov, E.A., Haberman, A.S., Rohrer, J., and Krämer, H. (2005). Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 118, 3663–3673.Google Scholar
  74. Raiborg, C., and Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452.Google Scholar
  75. Ravikumar, B., Acevedo-Arozena, A., Imarisio, S., Berger, Z., Vacher, C., O’Kane, C.J., Brown, S.D., and Rubinsztein, D.C. (2005). Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37, 771–776.Google Scholar
  76. Ravikumar, B., Futter, M., Jahreiss, L., Korolchuk, V.I., Lichtenberg, M., Luo, S., Massey, D.C., Menzies, F.M., Narayanan, U., Renna, M., et al. (2009). Mammalian macroautophagy at a glance. J Cell Biol 122, 1707–1711.Google Scholar
  77. Recacha, R., Boulet, A., Jollivet, F., Monier, S., Houdusse, A., Goud, B., and Khan, A.R. (2009). Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain. Structure 17, 21–30.Google Scholar
  78. Rieder, S.E., and Emr, S.D. (1997). A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol Biol Cell 8, 2307–2327.Google Scholar
  79. Rothman, J.E. (1994). Mechanisms of intracellular protein transport. Nature 372, 55–63.Google Scholar
  80. Rothman, J.E., and Wieland, F.T. (1996). Protein sorting by transport vesicles. Science 272, 227–234.Google Scholar
  81. Rusten, T.E., and Stenmark, H. (2009). How do ESCRT proteins control autophagy? J Cell Sci 122, 2179–2183.Google Scholar
  82. Rusten, T.E., Vaccari, T., Lindmo, K., Rodahl, L.M., Nezis, I.P., Sem-Jacobsen, C., Wendler, F., Vincent, J.P., Brech, A., Bilder, D., et al. (2007). ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17, 1817–1825.Google Scholar
  83. Saftig, P., Beertsen, W., and Eskelinen, E.L. (2008). LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 4, 510–512.Google Scholar
  84. Sato, T.K., Darsow, T., and Emr, S.D. (1998). Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol Cell Biol 18, 5308–5319.Google Scholar
  85. Sato, T.K., Rehling, P., Peterson, M.R., and Emr, S.D. (2000). Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol Cell 6, 661–671.Google Scholar
  86. Satoh, A.K., O’Tousa, J.E., Ozaki, K., and Ready, D.F. (2005). Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132, 1487–1497.Google Scholar
  87. Schroer, T.A., and Sheetz, M.P. (1991). Two activators of microtubulebased vesicle transport. J Cell Biol 115, 1309–1318.Google Scholar
  88. Seals, D.F., Eitzen, G., Margolis, N., Wickner, W.T., and Price, A. (2000). A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc Natl Acad Sci U S A 97, 9402–9407.Google Scholar
  89. Seglen, P.O., Berg, T.O., Blankson, H., Fengsrud, M., Holen, I., and Strømhaug, P.E. (1996). Structural aspects of autophagy. Adv Exp Med Biol 389, 103–111.Google Scholar
  90. Shirahama, K., Noda, T., and Ohsumi, Y. (1997). Mutational analysis of Csc1/Vps4p: involvement of endosome in regulation of autophagy in yeast. Cell Struct Funct 22, 501–509.Google Scholar
  91. Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., and Rothman, J.E. (1993). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418.Google Scholar
  92. Somsel Rodman, J., and Wandinger-Ness, A. (2000). Rab GTPases coordinate endocytosis. J Cell Sci 113, 183–192.Google Scholar
  93. Stroupe, C., Collins, K.M., Fratti, R.A., and Wickner, W. (2006). Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J 25, 1579–1589.Google Scholar
  94. Sugawara, K., Suzuki, N.N., Fujioka, Y., Mizushima, N., Ohsumi, Y., and Inagaki, F. (2004). The crystal structure of microtubuleassociated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9, 611–618.Google Scholar
  95. Suriapranata, I., Epple, U.D., Bernreuther, D., Bredschneider, M., Sovarasteanu, K., and Thumm, M. (2000). The breakdown of autophagic vesicles inside the vacuole depends on Aut4p. J Cell Sci 113, 4025–4033.Google Scholar
  96. Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mulé, J.J., et al. (2007). Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9, 1142–1151.Google Scholar
  97. Takahashi, Y., Meyerkord, C.L., and Wang, H.G. (2008). BARgaining membranes for autophagosome formation: Regulation of autophagy and tumorigenesis by Bif-1/Endophilin B1. Autophagy 4, 121–124.Google Scholar
  98. Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119, 301–311.Google Scholar
  99. Tamai, K., Tanaka, N., Nara, A., Yamamoto, A., Nakagawa, I., Yoshimori, T., Ueno, Y., Shimosegawa, T., and Sugamura, K. (2007). Role of Hrs in maturation of autophagosomes in mammalian cells. Biochem Biophys Res Commun 360, 721–727.Google Scholar
  100. Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E.L., Hartmann, D., Lüllmann-Rauch, R., Janssen, P.M., Blanz, J., von Figura, K., and Saftig, P. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906.Google Scholar
  101. Teter, S.A., Eggerton, K.P., Scott, S.V., Kim, J., Fischer, A.M., and Klionsky, D.J. (2001). Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 276, 2083–2087.Google Scholar
  102. Ungermann, C., and Langosch, D. (2005). Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci 118, 3819–3828.Google Scholar
  103. Ungermann, C., Nichols, B.J., Pelham, H.R.B., and Wickner, W. (1998). A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J Cell Biol 140, 61–69.Google Scholar
  104. Ungermann, C., von Mollard, G.F., Jensen, O.N., Margolis, N., Stevens, T.H., and Wickner, W. (1999). Three v-SNAREs and two t- SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. J Cell Biol 145, 1435–1442.Google Scholar
  105. Ungermann, C., and Wickner, W. (1998). Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J 17, 3269–3276.Google Scholar
  106. Wang, C.-W., and Klionsky, D.J. (2003). The molecular mechanism of autophagy. Mol Med 9, 65–76.Google Scholar
  107. Wang, C.-W., Stromhaug, P.E., Kauffman, E.J., Weisman, L.S., and Klionsky, D.J. (2003). Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 163, 973–985.Google Scholar
  108. Wang, C.-W., Stromhaug, P.E., Shima, J., and Klionsky, D.J. (2002). The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem 277, 47917–47927.Google Scholar
  109. Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., Söllner, T.H., and Rothman, J.E. (1998). SNAR-Epins: minimal machinery for membrane fusion. Cell 92, 759–772.Google Scholar
  110. White, S.R., and Lauring, B. (2007). AAA + ATPases: achieving diversity of function with conserved machinery. Traffic 8, 1657–1667.Google Scholar
  111. Wurmser, A.E., Sato, T.K., and Emr S.D. (2000).New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J Cell Biol 151, 551–62.Google Scholar
  112. Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102–1109.Google Scholar
  113. Xu, H., Jun, Y., Thompson, J., Yates, J., and Wickner, W. (2010). HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec1p during membrane fusion. J EMBO 29, 1948–1960.Google Scholar
  114. Yang, Z., Huang, J., Geng, J., Nair, U., and Klionsky, D.J. (2006). Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17, 5094–5104.Google Scholar
  115. Yorimitsu, T., and Klionsky, D.J. (2005). Autophagy: molecular machinery for self-eating. Cell Death Differ 12, 1542–1552.Google Scholar
  116. Yu, L., McPhee, C.K., Zheng, L., Mardones, G.A., Rong, Y., Peng, J., Mi, N., Zhao, Y., Liu, Z., Wan, F., et al. (2010). Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 17, 942–946.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life ScienceTsinghua UniversityBeijingChina
  2. 2.College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations