Protein & Cell

, Volume 1, Issue 9, pp 802–810 | Cite as

Heteromerization of TRP channel subunits: extending functional diversity

  • Wei Cheng
  • Changsen Sun
  • Jie ZhengEmail author


Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.


co-assembly molecular mechanism diversification nonselective cation channel polymodal receptor multi-subunit protein complex 


  1. Alessandri-Haber, N., Dina, O.A., Chen, X., and Levine, J.D. (2009). TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29, 6217–6228.CrossRefGoogle Scholar
  2. Arniges, M., Fernández-Fernández, J.M., Albrecht, N., Schaefer, M., and Valverde, M.A. (2006). Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281, 1580–1586.CrossRefGoogle Scholar
  3. Bai, C.X., Giamarchi, A., Rodat-Despoix, L., Padilla, F., Downs, T., Tsiokas, L., and Delmas, P. (2008). Formation of a new receptoroperated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 9, 472–479.CrossRefGoogle Scholar
  4. Bargal, R., Avidan, N., Ben-Asher, E., Olender, Z., Zeigler, M., Frumkin, A., Raas-Rothschild, A., Glusman, G., Lancet, D., and Bach, G. (2000). Identification of the gene causing mucolipidosis type IV. Nat Genet 26, 118–123.CrossRefGoogle Scholar
  5. Bautista, D.M., Jordt, S.E., Nikai, T., Tsuruda, P.R., Read, A.J., Poblete, J., Yamoah, E.N., Basbaum, A.I., and Julius, D. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282.CrossRefGoogle Scholar
  6. Becker, D., Müller, M., Leuner, K., and Jendrach, M. (2008). The Cterminal domain of TRPV4 is essential for plasma membrane localization. Mol Membr Biol 25, 139–151.CrossRefGoogle Scholar
  7. Chang, Q., Gyftogianni, E., van de Graaf, S.F., Hoefs, S., Weidema, F. A., Bindels, R.J., and Hoenderop, J.G. (2004). Molecular determinants in TRPV5 channel assembly. J Biol Chem 279, 54304–54311.CrossRefGoogle Scholar
  8. Cheng, W., Yang, F., Takanishi, C.L., and Zheng, J. (2007). Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol 129, 191–207.CrossRefGoogle Scholar
  9. Chuang, H.H., Neuhausser, W.M., and Julius, D. (2004). The supercooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859–869.CrossRefGoogle Scholar
  10. Chubanov, V., Mederos y Schnitzler, M., Wäring, J., Plank, A., and Gudermann, T. (2005). Emerging roles of TRPM6/TRPM7 channel kinase signal transduction complexes. Naunyn Schmiedebergs Arch Pharmacol 371, 334–341.CrossRefGoogle Scholar
  11. Chubanov, V., Waldegger, S., Mederos y Schnitzler, M., Vitzthum, H., Sassen, M.C., Seyberth, H.W., Konrad, M., and Gudermann, T. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 101, 2894–2899.CrossRefGoogle Scholar
  12. Clapham, D.E. (2003). TRP channels as cellular sensors. Nature 426, 517–524.CrossRefGoogle Scholar
  13. Clapham, D.E., Runnels, L.W., and Strübing, C. (2001). The TRP ion channel family. Nat Rev Neurosci 2, 387–396.CrossRefGoogle Scholar
  14. Cosens, D.J., and Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285–287.CrossRefGoogle Scholar
  15. Curcio-Morelli, C., Zhang, P., Venugopal, B., Charles, F.A., Browning, M.F., Cantiello, H.F., and Slaugenhaupt, S.A. (2010). Functional multimerization of mucolipin channel proteins. J Cell Physiol 222, 328–335.CrossRefGoogle Scholar
  16. Delmas, P. (2005). Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch 451, 264–276.CrossRefGoogle Scholar
  17. Delmas, P., Nauli, S.M., Li, X., Coste, B., Osorio, N., Crest, M., Brown, D.A., and Zhou, J. (2004). Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18, 740–742.Google Scholar
  18. Di Palma, F., Belyantseva, I.A., Kim, H.J., Vogt, T.F., Kachar, B., and Noben-Trauth, K. (2002). Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci U S A 99, 14994–14999.CrossRefGoogle Scholar
  19. Engelke, M., Friedrich, O., Budde, P., Schäfer, C., Niemann, U., Zitt, C., Jüngling, E., Rocks, O., Lückhoff, A., and Frey, J. (2002). Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta. FEBS Lett 523, 193–199.CrossRefGoogle Scholar
  20. Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V., and Niemeyer, B.A. (2004). Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J Biol Chem 279, 34456–34463.CrossRefGoogle Scholar
  21. Feng, S., Okenka, G.M., Bai, C.X., Streets, A.J., Newby, L.J., DeChant, B.T., Tsiokas, L., Obara, T., and Ong, A.C. (2008). Identification and functional characterization of an N-terminal oligomerization domain for polycystin-2. J Biol Chem 283, 28471–28479.CrossRefGoogle Scholar
  22. GarcÍa-Sanz, N., Fernández-Carvajal, A., Morenilla-Palao, C., Planells-Cases, R., Fajardo-Sánchez, E., Fernández-Ballester, G., and Ferrer-Montiel, A. (2004). Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J Neurosci 24, 5307–5314.CrossRefGoogle Scholar
  23. Gaudet, R. (2009). Divide and conquer: high resolution structural information on TRP channel fragments. J Gen Physiol 133, 231–237.CrossRefGoogle Scholar
  24. Gillo, B., Chorna, I., Cohen, H., Cook, B., Manistersky, I., Chorev, M., Arnon, A., Pollock, J.A., Selinger, Z., and Minke, B. (1996). Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc Natl Acad Sci U S A 93, 14146–14151.CrossRefGoogle Scholar
  25. Goel, M., Sinkins, W.G., and Schilling, W.P. (2002). Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277, 48303–48310.CrossRefGoogle Scholar
  26. Grimm, D.H., Cai, Y., Chauvet, V., Rajendran, V., Zeltner, R., Geng, L., Avner, E.D., Sweeney, W., Somlo, S., and Caplan, M.J. (2003). Polycystin-1 distribution is modulated by polycystin-2 expression in mammalian cells. J Biol Chem 278, 36786–36793.CrossRefGoogle Scholar
  27. Groves, M.R., and Barford, D. (1999). Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 9, 383–389.CrossRefGoogle Scholar
  28. Gudermann, T., Hofmann, T., Mederos, Y.S.M., and Dietrich, A. (2004). Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found Symp 258, 103–118; discussion 118–122, 155–109, 263–106.CrossRefGoogle Scholar
  29. Hanaoka, K., Qian, F., Boletta, A., Bhunia, A.K., Piontek, K., Tsiokas, L., Sukhatme, V.P., Guggino, W.B., and Germino, G.G. (2000). Coassembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990–994.CrossRefGoogle Scholar
  30. Hellwig, N., Albrecht, N., Harteneck, C., Schultz, G., and Schaefer, M. (2005). Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118, 917–928.CrossRefGoogle Scholar
  31. Hoenderop, J.G., Voets, T., Hoefs, S., Weidema, F., Prenen, J., Nilius, B., and Bindels, R.J. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22, 776–785.CrossRefGoogle Scholar
  32. Hofmann, T., Schaefer, M., Schultz, G., and Gudermann, T. (2002). Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99, 7461–7466.CrossRefGoogle Scholar
  33. Ishimaru, Y., Inada, H., Kubota, M., Zhuang, H., Tominaga, M., and Matsunami, H. (2006). Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 103, 12569–12574.CrossRefGoogle Scholar
  34. Jiang, L.H. (2007). Subunit interaction in channel assembly and functional regulation of transient receptor potential melastatin (TRPM) channels. Biochem Soc Trans 35, 86–88.CrossRefGoogle Scholar
  35. Jin, X., Touhey, J., and Gaudet, R. (2006). Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281, 25006–25010.CrossRefGoogle Scholar
  36. Kobori, T., Smith, G.D., Sandford, R., and Edwardson, J.M. (2009). The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 22 stoichiometry and an alternating subunit arrangement. J Biol Chem 284, 35507–35513.CrossRefGoogle Scholar
  37. Köttgen, M., Buchholz, B., Garcia-Gonzalez, M.A., Kotsis, F., Fu, X., Doerken, M., Boehlke, C., Steffl, D., Tauber, R., Wegierski, T., et al. (2008). TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182, 437–447.CrossRefGoogle Scholar
  38. Lepage, P.K., and Boulay, G. (2007). Molecular determinants of TRP channel assembly. Biochem Soc Trans 35, 81–83.CrossRefGoogle Scholar
  39. Lepage, P.K., Lussier, M.P., Barajas-Martinez, H., Bousquet, S.M., Blanchard, A.P., Francoeur, N., Dumaine, R., and Boulay, G. (2006). Identification of two domains involved in the assembly of transient receptor potential canonical channels. J Biol Chem 281, 30356–30364.CrossRefGoogle Scholar
  40. Li, M., Jiang, J., and Yue, L. (2006). Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127, 525–537.CrossRefGoogle Scholar
  41. Liapi, A., and Wood, J.N. (2005). Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 22, 825–834.CrossRefGoogle Scholar
  42. Lintschinger, B., Balzer-Geldsetzer, M., Baskaran, T., Graier, W.F., Romanin, C., Zhu, M.X., and Groschner, K. (2000). Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 275, 27799–27805.Google Scholar
  43. Liu, B., Zhang, C., and Qin, F. (2005a). Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 25, 4835–4843.CrossRefGoogle Scholar
  44. Liu, D., and Liman, E.R. (2003). Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100, 15160–15165.CrossRefGoogle Scholar
  45. Liu, X., Bandyopadhyay, B.C., Singh, B.B., Groschner, K., and Ambudkar, I.S. (2005b). Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280, 21600–21606.CrossRefGoogle Scholar
  46. LopezJimenez, N.D., Cavenagh, M.M., Sainz, E., Cruz-Ithier, M.A., Battey, J.F., and Sullivan, S.L. (2006). Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 98, 68–77.CrossRefGoogle Scholar
  47. McCleverty, C.J., Koesema, E., Patapoutian, A., Lesley, S.A., and Kreusch, A. (2006). Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci 15, 2201–2206.CrossRefGoogle Scholar
  48. Mei, Z.Z., and Jiang, L.H. (2009). Requirement for the N-terminal coiled-coil domain for expression and function, but not subunit interaction of, the ADPR-activated TRPM2 channel. J Membr Biol 230, 93–99.CrossRefGoogle Scholar
  49. Mei, Z.Z., Xia, R., Beech, D.J., and Jiang, L.H. (2006). Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin-related transient receptor potential channel 2. J Biol Chem 281, 38748–38756.CrossRefGoogle Scholar
  50. Mery, L., Strauss, B., Dufour, J.F., Krause, K.H., and Hoth, M. (2002). The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 115, 3497–3508.Google Scholar
  51. Moiseenkova-Bell, V.Y., and Wensel, T.G. (2009). Hot on the trail of TRP channel structure. J Gen Physiol 133, 239–244.CrossRefGoogle Scholar
  52. Montell, C. (2005). The TRP superfamily of cation channels. Sci STKE 2005, re3.Google Scholar
  53. Murakami, M., Ohba, T., Xu, F., Shida, S., Satoh, E., Ono, K., Miyoshi, I., Watanabe, H., Ito, H., and Iijima, T. (2005). Genomic organization and functional analysis of murine PKD2L1. J Biol Chem 280, 5626–5635.CrossRefGoogle Scholar
  54. Nilius, B. (2007a). Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bull Mem Acad R Med Belg 162, 244–253.Google Scholar
  55. Nilius, B. (2007b). TRP channels in disease. Biochim Biophys Acta 1772, 805–812.CrossRefGoogle Scholar
  56. Owsianik, G., D’hoedt, D., Voets, T., and Nilius, B. (2006). Structurefunction relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 156, 61–90.Google Scholar
  57. Phelps, C.B., Huang, R.J., Lishko, P.V., Wang, R.R., and Gaudet, R. (2008). Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47, 2476–2484.CrossRefGoogle Scholar
  58. Plant, T.D., and Schaefer, M. (2003). TRPC4 and TRPC5: receptoroperated Ca2+-permeable nonselective cation channels. Cell Calcium 33, 441–450.CrossRefGoogle Scholar
  59. Plant, T.D., and Schaefer, M. (2005). Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 371, 266–276.CrossRefGoogle Scholar
  60. Poteser, M., Graziani, A., Rosker, C., Eder, P., Derler, I., Kahr, H., Zhu, M.X., Romanin, C., and Groschner, K. (2006). TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281, 13588–13595.CrossRefGoogle Scholar
  61. Qian, F., Germino, F.J., Cai, Y., Zhang, X., Somlo, S., and Germino, G. G. (1997). PKD1 interacts with PKD2 through a probable coiledcoil domain. Nat Genet 16, 179–183.CrossRefGoogle Scholar
  62. Reaves, B.J., and Wolstenholme, A.J. (2007). The TRP channel superfamily: insights into how structure, protein-lipid interactions and localization influence function. Biochem Soc Trans 35, 77–80.CrossRefGoogle Scholar
  63. Riccio, A., Medhurst, A.D., Mattei, C., Kelsell, R.E., Calver, A.R., Randall, A.D., Benham, C.D., and Pangalos, M.N. (2002). mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109, 95–104.CrossRefGoogle Scholar
  64. Rohács, T., Lopes, C.M., Michailidis, I., and Logothetis, D.E. (2005). PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8, 626–634.CrossRefGoogle Scholar
  65. Rutter, A.R., Ma, Q.P., Leveridge, M., and Bonnert, T.P. (2005). Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport 16, 1735–1739.CrossRefGoogle Scholar
  66. Salas, M.M., Hargreaves, K.M., and Akopian, A.N. (2009). TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1. Eur J Neurosci 29, 1568–1578.CrossRefGoogle Scholar
  67. Schaefer, M. (2005). Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451, 35–42.CrossRefGoogle Scholar
  68. Schindl, R., and Romanin, C. (2007). Assembly domains in TRP channels. Biochem Soc Trans 35, 84–85.CrossRefGoogle Scholar
  69. Schmidt, M., Dubin, A.E., Petrus, M.J., Earley, T.J., and Patapoutian, A. (2009). Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron 64, 498–509.CrossRefGoogle Scholar
  70. Sedgwick, S.G., and Smerdon, S.J. (1999). The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24, 311–316.CrossRefGoogle Scholar
  71. Sharif-Naeini, R., Folgering, J.H., Bichet, D., Duprat, F., Lauritzen, I., Arhatte, M., Jodar, M., Dedman, A., Chatelain, F.C., Schulte, U., et al. (2009). Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139, 587–596.CrossRefGoogle Scholar
  72. Smith, G.D., Gunthorpe, M.J., Kelsell, R.E., Hayes, P.D., Reilly, P., Facer, P., Wright, J.E., Jerman, J.C., Walhin, J.P., Ooi, L., et al. (2002). TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190.CrossRefGoogle Scholar
  73. Stewart, A.P., Smith, G.D., Sandford, R.N., and Edwardson, J.M. (2010). Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99, 790–797.CrossRefGoogle Scholar
  74. Stowers, L., Holy, T.E., Meister, M., Dulac, C., and Koentges, G. (2002). Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500.CrossRefGoogle Scholar
  75. Strübing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D.E. (2001). TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645–655.CrossRefGoogle Scholar
  76. Strübing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D.E. (2003). Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278, 39014–39019.CrossRefGoogle Scholar
  77. Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D. (1998). The cloned capsaicin receptor integrates multiple painproducing stimuli. Neuron 21, 531–543.CrossRefGoogle Scholar
  78. Tsiokas, L., Arnould, T., Zhu, C., Kim, E., Walz, G., and Sukhatme, V. P. (1999). Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci U S A 96, 3934–3939.CrossRefGoogle Scholar
  79. Tsiokas, L., Kim, E., Arnould, T., Sukhatme, V.P., and Walz, G. (1997). Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A 94, 6965–6970.CrossRefGoogle Scholar
  80. Tsuruda, P.R., Julius, D., and Minor, D.L. Jr. (2006). Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51, 201–212.CrossRefGoogle Scholar
  81. Venkatachalam, K., Hofmann, T., and Montell, C. (2006). Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem 281, 17517–17527.CrossRefGoogle Scholar
  82. Vetter, I., Cheng, W., Peiris, M., Wyse, B.D., Roberts-Thomson, S.J., Zheng, J., Monteith, G.R., and Cabot, P.J. (2008). Rapid, opioidsensitive mechanisms involved in transient receptor potential vanilloid 1 sensitization. J Biol Chem 283, 19540–19550.CrossRefGoogle Scholar
  83. Xu, X.Z., Chien, F., Butler, A., Salkoff, L., and Montell, C. (2000). TRPgamma, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26, 647–657.CrossRefGoogle Scholar
  84. Xu, X.Z., Li, H.S., Guggino, W.B., and Montell, C. (1997). Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89, 1155–1164.CrossRefGoogle Scholar
  85. Yu, Y., Ulbrich, M.H., Li, M.H., Buraei, Z., Chen, X.Z., Ong, A.C., Tong, L., Isacoff, E.Y., and Yang, J. (2009). Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106, 11558–11563.CrossRefGoogle Scholar
  86. Zagranichnaya, T.K., Wu, X., and Villereal, M.L. (2005). Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280, 29559–29569.CrossRefGoogle Scholar
  87. Zhang, P., Luo, Y., Chasan, B., González-Perrett, S., Montalbetti, N., Timpanaro, G.A., Cantero, M.R., Ramos, A.J., Goldmann, W.H., Zhou, J., et al. (2009). The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and heteromultimers with TRPC1. Hum Mol Genet 18, 1238–1251.CrossRefGoogle Scholar
  88. Zhang, Y., Hoon, M.A., Chandrashekar, J., Mueller, K.L., Cook, B., Wu, D., Zuker, C.S., and Ryba, N.J. (2003). Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301.CrossRefGoogle Scholar
  89. Zhong, H., Molday, L.L., Molday, R.S., and Yau, K.W. (2002). The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420, 193–198.CrossRefGoogle Scholar
  90. Zhou, X.L., Batiza, A.F., Loukin, S.H., Palmer, C.P., Kung, C., and Saimi, Y. (2003). The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci U S A 100, 7105–7110.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Lab of Biomedical Optics, College of Physics and Optoelectronic EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Physiology and Membrane BiologyUniversity of California School of MedicineDavisUSA

Personalised recommendations