Protein & Cell

, Volume 1, Issue 8, pp 737–751 | Cite as

Extensions of PDZ domains as important structural and functional elements

  • Conan K. Wang
  • Lifeng Pan
  • Jia Chen
  • Mingjie Zhang
Review

Abstract

‘Divide and conquer’ has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions ‘extensions’. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results (http://bcz102.ust.hk/pdzex/). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.

Keywords

PDZ domain PDZ extensions protein structure 

References

  1. Ballif, B.A., Carey, G.R., Sunyaev, S.R., and Gygi, S.P. (2008). Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. J Proteome Res 7, 311–318.CrossRefGoogle Scholar
  2. Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L., et al. (2004). The Pfam protein families database. Nucleic Acids Res 32, D138–D141.CrossRefGoogle Scholar
  3. Bhattacharya, S., Dai, Z., Li, J., Baxter, S., Callaway, D.J., Cowburn, D., and Bu, Z. (2010). A conformational switch in the scaffolding protein NHERF1 controls autoinhibition and complex formation. J Biol Chem 285, 9981–9994.CrossRefGoogle Scholar
  4. Blazer, L.L., and Neubig, R.R. (2009). Small molecule protein-protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacology 34, 126–141.CrossRefGoogle Scholar
  5. Bredt, D.S., and Snyder, S.H. (1994). Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63, 175–195.CrossRefGoogle Scholar
  6. Brenman, J.E., Chao, D.S., Xia, H., Aldape, K., and Bredt, D.S. (1995). Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82, 743–752.CrossRefGoogle Scholar
  7. Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., Wu, Z., Huang, F., Xia, H., Peters, M.F., et al. (1996a). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84, 757–767.CrossRefGoogle Scholar
  8. Brenman, J.E., Christopherson, K.S., Craven, S.E., McGee, A.W., and Bredt, D.S. (1996b). Cloning and characterization of postsynaptic density 93, a nitric oxide synthase interacting protein. J Neurosci 16, 7407–7415.Google Scholar
  9. Chen, J., Pan, L., Wei, Z., Zhao, Y., and Zhang, M. (2008). Domainswapped dimerization of ZO-1 PDZ2 generates specific and regulatory connexin43-binding sites. EMBO J 27, 2113–2123.CrossRefGoogle Scholar
  10. Chi, C.N., EngstrÖm, A., Gianni, S., Larsson, M., and Jemth, P. (2006). Two conserved residues govern the salt and pH dependencies of the binding reaction of a PDZ domain. J Biol Chem 281, 36811–36818.CrossRefGoogle Scholar
  11. Christopherson, K.S., Hillier, B.J., Lim, W.A., and Bredt, D.S. (1999). PSD-95 assembles a ternary complex with the N-methyl-Daspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274, 27467–27473.CrossRefGoogle Scholar
  12. Chung, H.J., Xia, J., Scannevin, R.H., Zhang, X., and Huganir, R.L. (2000). Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 20, 7258–7267.Google Scholar
  13. Cohen, A.R., Woods, D.F., Marfatia, S.M., Walther, Z., Chishti, A.H., Anderson, J.M., and Wood, D.F. (1998). Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol 142, 129–138.CrossRefGoogle Scholar
  14. Dawson, T.M., Dawson, V.L., and Snyder, S.H. (1992). A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32, 297–311.CrossRefGoogle Scholar
  15. Dong, H., Zhang, P., Song, I., Petralia, R.S., Liao, D., and Huganir, R. L. (1999). Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J Neurosci 19, 6930–6941.Google Scholar
  16. Doyle, D.A., Lee, A., Lewis, J., Kim, E., Sheng, M., and MacKinnon, R. (1996). Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076.CrossRefGoogle Scholar
  17. El-Amraoui, A., and Petit, C. (2005). Usher I syndrome: unraveling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci 118, 4593–4603.CrossRefGoogle Scholar
  18. Feng, W., and Zhang, M. (2009). Organization and dynamics of PDZdomain-related supramodules in the postsynaptic density. Nat Rev Neurosci 10, 87–99.CrossRefGoogle Scholar
  19. Feng, W., Shi, Y., Li, M., and Zhang, M. (2003). Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding. Nat Struct Biol 10, 972–978.CrossRefGoogle Scholar
  20. Feng, H., Vu, N.D., and Bai, Y. (2005). Detection of a hidden folding intermediate of the third domain of PDZ. J Mol Biol 346, 345–353.CrossRefGoogle Scholar
  21. Frishman, D., and Argos, P. (1996). Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng 9, 133–142.CrossRefGoogle Scholar
  22. Gao, L., Joberty, G., and Macara, I.G. (2002). Assembly of epithelial tight junctions is negatively regulated by Par6. Curr Biol 12, 221–225.CrossRefGoogle Scholar
  23. Garrard, S.M., Capaldo, C.T., Gao, L., Rosen, M.K., Macara, I.G., and Tomchick, D.R. (2003). Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J 22, 1125–1133.CrossRefGoogle Scholar
  24. Harris, B.Z., and Lim, W.A. (2001). Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114, 3219–3231.Google Scholar
  25. Hegedüs, T., Sessler, T., Scott, R., Thelin, W., Bakos, E., Váradi, A., Szabó, K., Homolya, L., Milgram, S.L., and Sarkadi, B. (2003). Cterminal phosphorylation of MRP2 modulates its interaction with PDZ proteins. Biochem Biophys Res Commun 302, 454–461.CrossRefGoogle Scholar
  26. Hillier, B.J., Christopherson, K.S., Prehoda, K.E., Bredt, D.S., and Lim, W.A. (1999). Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284, 812–815.CrossRefGoogle Scholar
  27. Huang, Z., Huang, P.L., Panahian, N., Dalkara, T., Fishman, M.C., and Moskowitz, M.A. (1994). Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883–1885.CrossRefGoogle Scholar
  28. Hurd, T.W., Gao, L., Roh, M.H., Macara, I.G., and Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 5, 137–142.CrossRefGoogle Scholar
  29. Joberty, G., Petersen, C., Gao, L., and Macara, I.G. (2000). The cellpolarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2, 531–539.CrossRefGoogle Scholar
  30. Jones, D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195–202.CrossRefGoogle Scholar
  31. Kim, E., and Sheng, M. (2004). PDZ domain proteins of synapses. Nat Rev Neurosci 5, 771–781.CrossRefGoogle Scholar
  32. Kim, E., Niethammer, M., Rothschild, A., Jan, Y.N., and Sheng, M. (1995). Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378, 85–88.CrossRefGoogle Scholar
  33. Kornau, H.C., Schenker, L.T., Kennedy, M.B., and Seeburg, P.H. (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740.CrossRefGoogle Scholar
  34. Lemmers, C., Michel, D., Lane-Guermonprez, L., Delgrossi, M.H., Médina, E., Arsanto, J.P., and Le Bivic, A. (2004). CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 15, 1324–1333.CrossRefGoogle Scholar
  35. Lin, D., Edwards, A.S., Fawcett, J.P., Mbamalu, G., Scott, J.D., and Pawson, T. (2000). A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2, 540–547.CrossRefGoogle Scholar
  36. Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., and Russell, R.B. (2003). Protein disorder prediction: implications for structural proteomics. Structure 11, 1453–1459.CrossRefGoogle Scholar
  37. Lockless, S.W., and Ranganathan, R. (1999). Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 295–299.CrossRefGoogle Scholar
  38. Mishra, P., Socolich, M., Wall, M.A., Graves, J., Wang, Z, and Ranganathan, R. (2007). Dynamic scaffolding in a G proteincoupled signaling system. Cell 131, 80–92.CrossRefGoogle Scholar
  39. Mortier, E., Wuytens, G., Leenaerts, I., Hannes, F., Heung, M.Y., Degeest, G., David, G., and Zimmermann, P. (2005). Nuclear speckles and nucleoli targeting by PIP2-PDZ domain interactions. EMBO J 24, 2556–2565.CrossRefGoogle Scholar
  40. Niethammer, M., Valtschanoff, J.G., Kapoor, T.M., Allison, D.W., Weinberg, R.J., Craig, A.M., and Sheng, M. (1998). CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron 20, 693–707.CrossRefGoogle Scholar
  41. Osten, P., Khatri, L., Perez, J.L., Köhr, G., Giese, G., Daly, C., Schulz, T.W., Wensky, A., Lee, L.M., and Ziff, E.B. (2000). Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27, 313–325.CrossRefGoogle Scholar
  42. Pawson, T., and Nash, P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452.CrossRefGoogle Scholar
  43. Penkert, R.R., DiVittorio, H.M., and Prehoda, K.E. (2004). Internal recognition through PDZ domain plasticity in the Par-6-Pals1 complex. Nat Struct Mol Biol 11, 1122–1127.CrossRefGoogle Scholar
  44. Peterson, F.C., Penkert, R.R., Volkman, B.F., and Prehoda, K.E. (2004). Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition. Mol Cell 13, 665–676.CrossRefGoogle Scholar
  45. Petit, C.M., Zhang, J., Sapienza, P.J., Fuentes, E.J., and Lee, A.L. (2009). Hidden dynamic allostery in a PDZ domain. Proc Natl Acad Sci U S A 106, 18249–18254.CrossRefGoogle Scholar
  46. Qian, Y., and Prehoda, K.E. (2006). Interdomain interactions in the tumor suppressor discs large regulate binding to the synaptic protein GukHolder. J Biol Chem 281, 35757–35763.CrossRefGoogle Scholar
  47. Rost, B., Yachdav, G., and Liu, J. (2004). The PredictProtein server. Nucleic Acids Res 32, W321–W326.CrossRefGoogle Scholar
  48. Schultz, J., Milpetz, F., Bork, P., and Ponting, C.P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95, 5857–5864.CrossRefGoogle Scholar
  49. Short, D.B., Trotter, K.W., Reczek, D., Kreda, S.M., Bretscher, A., Boucher, R.C., Stutts, M.J., and Milgram, S.L. (1998). An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273, 19797–19801.CrossRefGoogle Scholar
  50. Stiffler, M.A., Chen, J.R., Grantcharova, V.P., Lei, Y., Fuchs, D., Allen, J.E., Zaslavskaia, L.A., and MacBeath, G. (2007). PDZ domain binding selectivity is optimized across the mouse proteome. Science 317, 364–369.CrossRefGoogle Scholar
  51. Thomas, G.D., Sander, M., Lau, K.S., Huang, P.L., Stull, J.T., and Victor, R.G. (1998). Impaired metabolic modulation of alphaadrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc Natl Acad Sci U S A 95, 15090–15095.CrossRefGoogle Scholar
  52. Tochio, H., Zhang, Q., Mandal, P., Li, M., and Zhang, M. (1999). Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide. Nat Struct Biol 6, 417–421.CrossRefGoogle Scholar
  53. Tochio, H., Mok, Y.K., Zhang, Q., Kan, H.M., Bredt, D.S., and Zhang, M. (2000). Formation of nNOS/PSD-95 PDZ dimer requires a preformed beta-finger structure from the nNOS PDZ domain. J Mol Biol 303, 359–370.CrossRefGoogle Scholar
  54. Tonikian, R., Zhang, Y., Sazinsky, S.L., Currell, B., Yeh, J.H., Reva, B., Held, H.A., Appleton, B.A., Evangelista, M., Wu, Y., et al. (2008). A specificity map for the PDZ domain family. PLoS Biol 6, e239.CrossRefGoogle Scholar
  55. Wang, P., Zhang, Q., Tochio, H., Fan, J.S., and Zhang, M. (2000). Formation of a native-like beta-hairpin finger structure of a peptide from the extended PDZ domain of neuronal nitric oxide synthase in aqueous solution. Eur J Biochem 267, 3116–3122.CrossRefGoogle Scholar
  56. Ward, J.J., McGuffin, L.J., Bryson, K., Buxton, B.F., and Jones, D.T. (2004). The DISOPRED server for the prediction of protein disorder. Bioinformatics 20, 2138–2139.CrossRefGoogle Scholar
  57. Weinman, E.J., Hall, R.A., Friedman, P.A., Liu-Chen, L.Y., and Shenolikar, S. (2006). The association of NHERF adaptor proteins with g protein-coupled receptors and receptor tyrosine kinases. Annu Rev Physiol 68, 491–505.CrossRefGoogle Scholar
  58. Wu, H., Feng, W., Chen, J., Chan, L.N., Huang, S., and Zhang, M. (2007). PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 28, 886–898.CrossRefGoogle Scholar
  59. Yan, J., Wen, W., Xu, W., Long, J.F., Adams, M.E., Froehner, S.C., and Zhang, M. (2005). Structure of the split PH domain and distinct lipid-binding properties of the PH-PDZ supramodule of alphasyntrophin. EMBO J 24, 3985–3995.CrossRefGoogle Scholar
  60. Yan, J., Pan, L., Chen, X., Wu, L., and Zhang, M. (2010). The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins. Proc Natl Acad Sci U S A 107, 4040–4045.CrossRefGoogle Scholar
  61. Zhang, M., and Wang, W. (2003). Organization of signaling complexes by PDZ-domain scaffold proteins. Acc Chem Res 36, 530–538.CrossRefGoogle Scholar
  62. Zhang, Q., Fan, J.-S., and Zhang, M. (2001). Interdomain chaperoning between PSD-95, Dlg, and Zo-1 (PDZ) domains of glutamate receptor-interacting proteins. J Biol Chem 276, 43216–43220.CrossRefGoogle Scholar
  63. Zimmermann, P., Meerschaert, K., Reekmans, G., Leenaerts, I., Small, J.V., Vandekerckhove, J., David, G., and Gettemans, J. (2002). PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Mol Cell 9, 1215–1225.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Conan K. Wang
    • 1
    • 2
  • Lifeng Pan
    • 1
  • Jia Chen
    • 1
  • Mingjie Zhang
    • 1
  1. 1.Department of Biochemistry, Molecular Neuroscience CenterHong Kong University of Science and TechnologyKowloon, Hong KongChina
  2. 2.Eskitis Institute for Cell and Molecular TherapiesGriffith UniversityBrisbaneAustralia

Personalised recommendations