Protein & Cell

, Volume 1, Issue 7, pp 638–655

Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting

  • Zhi Huang
  • Lin Cheng
  • Olga A. Guryanova
  • Qiulian Wu
  • Shideng Bao


Glioblastomas (GBMs) are highly lethal primary brain tumors. Despite current therapeutic advances in other solid cancers, the treatment of these malignant gliomas remains essentially palliative. GBMs are extremely resistant to conventional radiation and chemotherapies. We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells (GSCs) promotes therapeutic resistance. We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth, which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs. Furthermore, stem cell-like cancer cells (cancer stem cells) have been shown to promote metastasis. Although GBMs rarely metastasize beyond the central nervous system, these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection, and GSCs display an aggressive invasive phenotype. These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment. Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells, but also display critical distinctions that provide important clues into useful therapeutic targets. In this review, we summarize the current understanding and advances in glioma stem cell research, and discuss potential targeting strategies for future development of anti-GSC therapies.


cancer stem cell glioblastoma therapeutic resistance molecular targeting tumor angiogenesis hypoxia response stem cell niche 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdouh, M., Facchino, S., Chatoo, W., Balasingam, V., Ferreira, J., and Bernier, G. (2009). BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29, 8884–8896.Google Scholar
  2. Adachi, K., Mirzadeh, Z., Sakaguchi, M., Yamashita, T., Nikolcheva, T., Gotoh, Y., Peltz, G., Gong, L., Kawase, T., Alvarez-Buylla, A., et al. (2007). Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells 25, 2827–2836.Google Scholar
  3. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983–3988.Google Scholar
  4. Ballas, N., Grunseich, C., Lu, D.D., Speh, J.C., and Mandel, G. (2005). REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657.Google Scholar
  5. Bao, S., Wu, Q., Li, Z., Sathornsumetee, S., Wang, H., McLendon, R. E., Hjelmeland, A.B., and Rich, J.N. (2008). Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68, 6043–6048.Google Scholar
  6. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006a). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760.Google Scholar
  7. Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A. B., Shi, Q., McLendon, R.E., Bigner, D.D., and Rich, J.N. (2006b). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66, 7843–7848.Google Scholar
  8. Bar, E.E., Chaudhry, A., Lin, A., Fan, X., Schreck, K., Matsui, W., Piccirillo, S., Vescovi, A.L., DiMeco, F., Olivi, A., et al. (2007). Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25, 2524–2533.Google Scholar
  9. Barker, N., Ridgway, R.A., van Es, J.H., van de Wetering, M., Begthel, H., van den Born, M., Danenberg, E., Clarke, A.R., Sansom, O.J., and Clevers, H. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611.Google Scholar
  10. Batchelor, T.T., Sorensen, A.G., di Tomaso, E., Zhang, W.T., Duda, D. G., Cohen, K.S., Kozak, K.R., Cahill, D.P., Chen, P.J., Zhu, M., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95.Google Scholar
  11. Becher, O.J., Hambardzumyan, D., Fomchenko, E.I., Momota, H., Mainwaring, L., Bleau, A.M., Katz, A.M., Edgar, M., Kenney, A.M., Cordon-Cardo, C., et al. (2008). Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res 68, 2241–2249.Google Scholar
  12. Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P.J., Aigner, L., Brawanski, A., Bogdahn, U., and Beier, C. P. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67, 4010–4015.Google Scholar
  13. Beier, D., Röhrl, S., Pillai, D.R., Schwarz, S., Kunz-Schughart, L.A., Leukel, P., Proescholdt, M., Brawanski, A., Bogdahn, U., Trampe-Kieslich, A., et al. (2008). Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 68, 5706–5715.Google Scholar
  14. Bleau, A.M., Hambardzumyan, D., Ozawa, T., Fomchenko, E.I., Huse, J.T., Brennan, C.W., and Holland, E.C. (2009). PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4, 226–235.Google Scholar
  15. Blom, T., Tynninen, O., Puputti, M., Halonen, M., Paetau, A., Haapasalo, H., Tanner, M., and Nupponen, N.N. (2006). Molecular genetic analysis of the REST/NRSF gene in nervous system tumors. Acta Neuropathol 112, 483–490.Google Scholar
  16. Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730–737.Google Scholar
  17. Bruggeman, S.W.M., Hulsman, D., Tanger, E., Buckle, T., Blom, M., Zevenhoven, J., van Tellingen, O., and van Lohuizen, M. (2007). Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12, 328–341.Google Scholar
  18. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., Oh, E.Y., Gaber, M.W., Finklestein, D., Allen, M., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82.Google Scholar
  19. Cao, Y., Lathia, J.D., Eyler, C.E., Wu, Q., Li, Z., Wang, H., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2010). Erythropoietin Receptor Signaling through STAT3 Is Required for Glioma Stem Cell Maintenance. Genes & Cancer 1, 50–61.Google Scholar
  20. Capela, A., and Temple, S. (2002). LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875.Google Scholar
  21. Carro, M.S., Lim, W.K., Alvarez, M.J., Bollo, R.J., Zhao, X., Snyder, E. Y., Sulman, E.P., Anne, S.L., Doetsch, F., Colman, H., et al. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325.Google Scholar
  22. Chang, C.J., Hsu, C.C., Yung, M.C., Chen, K.Y., Tzao, C., Wu, W.F., Chou, H.Y., Lee, Y.Y., Lu, K.H., Chiou, S.H., et al. (2009). Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression. Biochem Biophys Res Commun 380, 236–242.Google Scholar
  23. Chiba, T., Miyagi, S., Saraya, A., Aoki, R., Seki, A., Morita, Y., Yonemitsu, Y., Yokosuka, O., Taniguchi, H., Nakauchi, H., et al. (2008). The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res 68, 7742–7749.Google Scholar
  24. Choe, G., Horvath, S., Cloughesy, T.F., Crosby, K., Seligson, D., Palotie, A., Inge, L., Smith, B.L., Sawyers, C.L., and Mischel, P.S. (2003). Analysis of the phosphatidylinositol 3-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63, 2742–2746.Google Scholar
  25. Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I., and Ruiz i Altaba, A. (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17, 165–172.Google Scholar
  26. Conti, A., Aguennouz, M., La Torre, D., Tomasello, C., Cardali, S., Angileri, F.F., Maio, F., Cama, A., Germanò, A., Vita, G., et al. (2009). miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol 93, 325–332.Google Scholar
  27. Dalerba, P., Dylla, S.J., Park, I.K., Liu, R., Wang, X., Cho, R.W., Hoey, T., Gurney, A., Huang, E.H., Simeone, D.M., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104, 10158–10163.Google Scholar
  28. Damjanov, I., Fox, N., Knowles, B.B., Solter, D., Lange, P.H., and Fraley, E.E. (1982). Immunohistochemical localization of murine stage-specific embryonic antigens in human testicular germ cell tumors. Am J Pathol 108, 225–230.Google Scholar
  29. de la Iglesia, N., Puram, S.V., and Bonni, A. (2009). STAT3 regulation of glioblastoma pathogenesis. Curr Mol Med 9, 580–590.Google Scholar
  30. Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J., Kulp, A.N., Qian, D., Lam, J.S., Ailles, L.E., Wong, M., et al. (2009). Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783.Google Scholar
  31. Ding, H., Shannon, P., Lau, N., Wu, X., Roncari, L., Baldwin, R.L., Takebayashi, H., Nagy, A., Gutmann, D.H., and Guha, A. (2003). Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63, 1106–1113.Google Scholar
  32. Dreesen, O., and Brivanlou, A.H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3, 7–17.Google Scholar
  33. Ehtesham, M., Sarangi, A., Valadez, J.G., Chanthaphaychith, S., Becher, M.W., Abel, T.W., Thompson, R.C., and Cooper, M.K. (2007). Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26, 5752–5761.Google Scholar
  34. Ellis, P., Fagan, B.M., Magness, S.T., Hutton, S., Taranova, O., Hayashi, S., McMahon, A., Rao, M., and Pevny, L. (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26, 148–165.Google Scholar
  35. Eyler, C.E., Foo, W.C., LaFiura, K.M., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2008). Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26, 3027–3036.Google Scholar
  36. Ezashi, T., Das, P., and Roberts, R.M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102, 4783–4788.Google Scholar
  37. Fan, X., Aalto, Y., Sanko, S.G., Knuutila, S., Klatzmann, D., and Castresana, J.S. (2002). Genetic profile, PTEN mutation and therapeutic role of PTEN in glioblastomas. Int J Oncol 21, 1141–1150.Google Scholar
  38. Fan, X., Khaki, L., Zhu, T.S., Soules, M.E., Talsma, C.E., Gul, N., Koh, C., Zhang, J., Li, Y.M., Maciaczyk, J., et al. (2010). NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28, 5–16.Google Scholar
  39. Fan, X., Matsui, W., Khaki, L., Stearns, D., Chun, J., Li, Y.M., and Eberhart, C.G. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66, 7445–7452.Google Scholar
  40. Folkins, C., Man, S., Xu, P., Shaked, Y., Hicklin, D.J., and Kerbel, R.S. (2007). Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67, 3560–3564.Google Scholar
  41. Folkins, C., Shaked, Y., Man, S., Tang, T., Lee, C.R., Zhu, Z., Hoffman, R.M., and Kerbel, R.S. (2009). Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 69, 7243–7251.Google Scholar
  42. Fong, H., Hohenstein, K.A., and Donovan, P.J. (2008). Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26, 1931–1938.Google Scholar
  43. Frank, N.Y., Schatton, T., and Frank, M.H. (2010). The therapeutic promise of the cancer stem cell concept. J Clin Invest 120, 41–50.Google Scholar
  44. Friedman, H.S., Prados, M.D., Wen, P.Y., Mikkelsen, T., Schiff, D., Abrey, L.E., Yung, W.K., Paleologos, N., Nicholas, M.K., Jensen, R., et al. (2009). Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27, 4733–4740.Google Scholar
  45. Furnari, F.B., Fenton, T., Bachoo, R.M., Mukasa, A., Stommel, J.M., Stegh, A., Hahn, W.C., Ligon, K.L., Louis, D.N., Brennan, C., et al. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21, 2683–2710.Google Scholar
  46. Gal, H., Pandi, G., Kanner, A.A., Ram, Z., Lithwick-Yanai, G., Amariglio, N., Rechavi, G., and Givol, D. (2008). MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochem Biophys Res Commun 376, 86–90.Google Scholar
  47. Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64, 7011–7021.Google Scholar
  48. Gallia, G.L., Tyler, B.M., Hann, C.L., Siu, I.M., Giranda, V.L., Vescovi, A.L., Brem, H., and Riggins, G.J. (2009). Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol Cancer Ther 8, 386–393.Google Scholar
  49. Gavert, N., Ben-Shmuel, A., Raveh, S., and Ben-Ze’ev, A. (2008). L1-CAM in cancerous tissues. Expert Opin Biol Ther 8, 1749–1757.Google Scholar
  50. Goodrich, L.V., Milenković, L., Higgins, K.M., and Scott, M.P. (1997). Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113.Google Scholar
  51. Griffero, F., Daga, A., Marubbi, D., Capra, M.C., Melotti, A., Pattarozzi, A., Gatti, M., Bajetto, A., Porcile, C., Barbieri, F., et al. (2009). Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors. J Biol Chem 284, 7138–7148.Google Scholar
  52. Grigoryan, T., Wend, P., Klaus, A., and Birchmeier, W. (2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22, 2308–2341.Google Scholar
  53. Gupta, P.B., Chaffer, C.L., and Weinberg, R.A. (2009). Cancer stem cells: mirage or reality? Nat Med 15, 1010–1012.Google Scholar
  54. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70.Google Scholar
  55. Heddleston, J.M., Li, Z., Lathia, J.D., Bao, S., Hjelmeland, A.B., and Rich, J.N. (2010). Hypoxia inducible factors in cancer stem cells. Br J Cancer 102, 789–795.Google Scholar
  56. Heddleston, J.M., Li, Z., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2009). The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8, 3274–3284.Google Scholar
  57. Hegi, M.E., Diserens, A.C, Gorlia, T., Hamou, M.F., de Tribolet, N., Weller, M., Kros, J.M., Hainfellner, J.A., Mason, W., Mariani, L., et al. (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352, 997–1003.Google Scholar
  58. Hemmati, H.D., Nakano, I., Lazareff, J.A., Masterman-Smith, M., Geschwind, D.H., Bronner-Fraser, M., and Kornblum, H.I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100, 15178–15183.Google Scholar
  59. Herms, J.W., von Loewenich, F.D., Behnke, J., Markakis, E., and Kretzschmar, H.A. (1999). c-myc oncogene family expression in glioblastoma and survival. Surg Neurol 51, 536–542.Google Scholar
  60. Hide, T., Takezaki, T., Nakatani, Y., Nakamura, H., Kuratsu, J.I., and Kondo, T. (2009). Sox11 prevents tumorigenesis of gliomainitiating cells by inducing neuronal differentiation. Cancer Res 69, 7953–7959.Google Scholar
  61. Hirschmann-Jax, C., Foster, A.E., Wulf, G.G., Nuchtern, J.G., Jax, T. W., Gobel, U., Goodell, M.A., Brenner, M.K. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101, 14228–14233.Google Scholar
  62. Hoey, T., Yen, W.C., Axelrod, F., Basi, J., Donigian, L., Dylla, S., Fitch-Bruhns, M., Lazetic, S., Park, I.K., Sato, A., et al. (2009). DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5, 168–177.Google Scholar
  63. Holland, E.C., Hively, W.P., DePinho, R.A., and Varmus, H.E. (1998). A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce gliomalike lesions in mice. Genes Dev 12, 3675–3685.Google Scholar
  64. Ikushima, H., Todo, T., Ino, Y., Takahashi, M., Miyazawa, K., and Miyazono, K. (2009). Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5, 504–514.Google Scholar
  65. Jensen, N.A., Pedersen, K.M., Lihme, F., Rask, L., Nielsen, J.V., Rasmussen, T.E., and Mitchelmore, C. (2003). Astroglial c-Myc overexpression predisposes mice to primary malignant gliomas. J Biol Chem 278, 8300–8308.Google Scholar
  66. Jensen, R.L. (2009). Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92, 317–335.Google Scholar
  67. Jeon, H.M., Jin, X., Lee, J.S., Oh, S.Y., Sohn, Y.W., Park, H.J., Joo, K. M., Park, W.Y., Nam, D.H., DePinho, R.A., et al. (2008). Inhibitor of differentiation 4 drives brain tumor-initiating cell genesis through cyclin E and notch signaling. Genes Dev 22, 2028–2033.Google Scholar
  68. Kalani, M.Y., Cheshier, S.H., Cord, B.J., Bababeygy, S.R., Vogel, H., Weissman, I.L., Palmer, T.D., and Nusse, R. (2008). Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A 105, 16970–16975.Google Scholar
  69. Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420–1428.Google Scholar
  70. Kanamori, M., Kawaguchi, T., Nigro, J.M., Feuerstein, B.G., Berger, M.S., Miele, L., and Pieper, R.O. (2007). Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg 106, 417–427.Google Scholar
  71. Kinzler, K.W., Bigner, S.H., Bigner, D.D., Trent, J.M., Law, M.L., O’Brien, S.J., Wong, A.J., and Vogelstein, B. (1987). Identification of an amplified, highly expressed gene in a human glioma. Science 236, 70–73.Google Scholar
  72. Koch, A., Waha, A., Tonn, J.C., Sörensen, N., Berthold, F., Wolter, M., Reifenberger, J., Hartmann, W., Friedl, W., Reifenberger, G., et al. (2001). Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93, 445–449.Google Scholar
  73. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648.Google Scholar
  74. Lathia, J.D., Mattson, M.P., and Cheng, A. (2008). Notch: from neural development to neurological disorders. J Neurochem 107, 1471–1481.Google Scholar
  75. Lawinger, P., Venugopal, R., Guo, Z.S., Immaneni, A., Sengupta, D., Lu, W., Rastelli, L., Marin Dias Carneiro, A., Levin, V., Fuller, G.N., et al. (2000). The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat Med 6, 826–831.Google Scholar
  76. Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N.M., Pastorino, S., Purow, B.W., Christopher, N., Zhang, W., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9, 391–403.Google Scholar
  77. Lee, J., Son, M.J., Woolard, K., Donin, N.M., Li, A., Cheng, C.H., Kotliarova, S., Kotliarov, Y., Walling, J., Ahn, S., et al. (2008). Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80.Google Scholar
  78. Li, J.L., Sainson, R.C., Shi, W., Leek, R., Harrington, L.S., Preusser, M., Biswas, S., Turley, H., Heikamp, E., Hainfellner, J.A., et al. (2007). Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67, 11244–11253.Google Scholar
  79. Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., Shi, Q., Cao, Y., Lathia, J., McLendon, R.E., et al. (2009). Hypoxiainducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15, 501–513.Google Scholar
  80. Lie, D.C., Colamarino, S.A., Song, H.J., Désiré, L., Mira, H., Consiglio, A., Lein, E.S., Jessberger, S., Lansford, H., Dearie, A. R., et al. (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370–1375.Google Scholar
  81. Lietz, M., Cicchetti, P., and Thiel, G. (1998). Inverse expression pattern of RESTand synapsin I in human neuroblastoma cells. Biol Chem 379, 1301–1304.Google Scholar
  82. Ligon, K.L., Alberta, J.A., Kho, A.T., Weiss, J., Kwaan, M.R., Nutt, C. L., Louis, D.N., Stiles, C.D., and Rowitch, D.H. (2004). The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol 63, 499–509.Google Scholar
  83. Ligon, K.L., Huillard, E., Mehta, S., Kesari, S., Liu, H., Alberta, J.A., Bachoo, R.M., Kane, M., Louis, D.N., Depinho, R.A., et al. (2007). Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53, 503–517.Google Scholar
  84. Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I.R., Lu, L., Irvin, D., Black, K.L., and Yu, J.S. (2006). Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5, 67–88.Google Scholar
  85. Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38, 431–440.Google Scholar
  86. Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., and Rowitch, D.H. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86.Google Scholar
  87. Maness, P.F., and Schachner, M. (2007). Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10, 19–26.Google Scholar
  88. Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715.Google Scholar
  89. McCord, A.M., Jamal, M., Shankavaram, U.T., Lang, F.F., Camphausen, K., and Tofilon, P.J. (2009). Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7, 489–497.Google Scholar
  90. McMahon, A.P., and Bradley, A. (1990). The Wnt-1 (int-1) protooncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085.Google Scholar
  91. Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278.Google Scholar
  92. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A., and Gaiano, N. (2007). Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355.Google Scholar
  93. Molofsky, A.V., Pardal, R., Iwashita, T., Park, I.K., Clarke, M.F., and Morrison, S.J. (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967.Google Scholar
  94. Morrison, S.J., Csete, M., Groves, A.K., Melega, W., Wold, B., and Anderson, D.J. (2000). Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20, 7370–7376.Google Scholar
  95. Moscatello, D.K., Holgado-Madruga, M., Emlet, D.R., Montgomery, R. B., and Wong, A.J. (1998). Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 273, 200–206.Google Scholar
  96. O’Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110.Google Scholar
  97. Ogden, A.T., Waziri, A.E., Lochhead, R.A., Fusco, D., Lopez, K., Ellis, J.A., Kang, J., Assanah, M., McKhann, G.M., Sisti, M.B., et al. (2008). Identification of A2B5+CD133-tumor-initiating cells in adult human gliomas. Neurosurgery 62, 505–514.Google Scholar
  98. Park, D.M., and Rich, J.N. (2009). Biology of glioma cancer stem cells. Mol Cells 28, 7–12.Google Scholar
  99. Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.Google Scholar
  100. Park, S.Y., Gönen, M., Kim, H.J., Michor, F., and Polyak, K. (2010). Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest 120, 636–644.Google Scholar
  101. Parmar, K., Mauch, P., Vergilio, J.A., Sackstein, R., and Down, J.D. (2007). Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104, 5431–5436.Google Scholar
  102. Parsa, A.T., Waldron, J.S., Panner, A., Crane, C.A., Parney, I.F., Barry, J.J., Cachola, K.E., Murray, J.C., Tihan, T., Jensen, M.C., et al. (2007). Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13, 84–88.Google Scholar
  103. Peñuelas, S., Anido, J., Prieto-Sánchez, R.M., Folch, G., Barba, I., Cuartas, I., García-Dorado, D., Poca, M.A., Sahuquillo, J., Baselga, J., et al. (2009). TGF-beta increases glioma-initiating cell selfrenewal through the induction of LIF in human glioblastoma. Cancer Cell 15, 315–327.Google Scholar
  104. Piccirillo, S.G., Combi, R., Cajola, L., Patrizi, A., Redaelli, S., Bentivegna, A., Baronchelli, S., Maira, G., Pollo, B., Mangiola, A., et al. (2009). Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28, 1807–1811.Google Scholar
  105. Piccirillo, S.G., Reynolds, B.A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., Brem, H., Olivi, A., Dimeco, F., and Vescovi, A.L. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765.Google Scholar
  106. Pietras, A., Gisselsson, D., Ora, I., Noguera, R., Beckman, S., Navarro, S., and Påhlman, S. (2008). High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol 214, 482–488.Google Scholar
  107. Pietras, A., Hansford, L.M., Johnsson, A.S., Bridges, E., Sjölund, J., Gisselsson, D., Rehn, M., Beckman, S., Noguera, R., Navarro, S., et al. (2009). HIF-2alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc Natl Acad Sci U S A 106, 16805–16810.Google Scholar
  108. Plate, K.H., and Risau, W. (1995). Angiogenesis in malignant gliomas. Glia 15, 339–347.Google Scholar
  109. Prince, M.E., Sivanandan, R., Kaczorowski, A., Wolf, G.T., Kaplan, M. J., Dalerba, P., Weissman, I.L., Clarke, M.F., and Ailles, L.E. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104, 973–978.Google Scholar
  110. Purow, B.W., Haque, R.M., Noel, M.W., Su, Q., Burdick, M.J., Lee, J., Sundaresan, T., Pastorino, S., Park, J.K., Mikolaenko, I., et al. (2005). Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65, 2353–2363.Google Scholar
  111. Radisky, D.C., and LaBarge, M.A. (2008). Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell 2, 511–512.Google Scholar
  112. Raveh, S., Gavert, N., and Ben-Ze’ev, A. (2009). L1 cell adhesion molecule (L1CAM) in invasive tumors. Cancer Lett 282, 137–145.Google Scholar
  113. Read, T.A., Fogarty, M.P., Markant, S.L., McLendon, R.E., Wei, Z., Ellison, D.W., Febbo, P.G., and Wechsler-Reya, R.J. (2009). Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15, 135–147.Google Scholar
  114. Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105–111.Google Scholar
  115. Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., and De Maria, R. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115.Google Scholar
  116. Rich, J.N., and Bao, S. (2007). Chemotherapy and cancer stem cells. Cell Stem Cell 1, 353–355.Google Scholar
  117. Rosen, J.M., and Jordan, C.T. (2009). The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673.Google Scholar
  118. Rudin, C.M., Hann, C.L., Laterra, J., Yauch, R.L., Callahan, C.A., Fu, L., Holcomb, T., Stinson, J., Gould, S.E., Coleman, B., et al. (2009). Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 361, 1173–1178.Google Scholar
  119. Ruiz i Altaba, A., Mas, C., and Stecca, B. (2007). The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17, 438–447.Google Scholar
  120. Santilli, G., Lamorte, G., Carlessi, L., Ferrari, D., Rota Nodari, L., Binda, E., Delia, D., Vescovi, A.L., De Filippis, L., and Najbauer, J. (2010). Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS ONE 5, e8575.Google Scholar
  121. Sauvageot, C.M., Weatherbee, J.L., Kesari, S., Winters, S.E., Barnes, J., Dellagatta, J., Ramakrishna, N.R., Stiles, C.D., Kung, A.L., Kieran, M.W., et al. (2009). Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro-oncol 11, 109–121.Google Scholar
  122. Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga-Gasser, A.M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L.M., Weishaupt, C., et al. (2008). Identification of cells initiating human melanomas. Nature 451, 345–349.Google Scholar
  123. Schmid, R.S., and Maness, P.F. (2008). L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol 18, 245–250.Google Scholar
  124. Sebens Müerköster, S., Werbing, V., Sipos, B., Debus, M.A., Witt, M., Grossmann, M., Leisner, D., Kötteritzsch, J., Kappes, H., Klöppel, G., et al. (2007). Drug-induced expression of the cellular adhesion molecule L1CAM confers anti-apoptotic protection and chemoresistance in pancreatic ductal adenocarcinoma cells. Oncogene 26, 2759–2768.Google Scholar
  125. Shahi, M.H., Lorente, A., and Castresana, J.S. (2008). Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma. Oncol Rep 19, 681–688.Google Scholar
  126. Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S.M., Goderie, S. K., Roysam, B., and Temple, S. (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300.Google Scholar
  127. Sherry, M.M., Reeves, A., Wu, J.K., and Cochran, B.H. (2009). STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27, 2383–2392.Google Scholar
  128. Shih, A.H., and Holland, E.C. (2006). Notch signaling enhances nestin expression in gliomas. Neoplasia 8, 1072–1082.Google Scholar
  129. Silber, J., Lim, D.A., Petritsch, C., Persson, A.I., Maunakea, A.K., Yu, M., Vandenberg, S.R., Ginzinger, D.G., James, C.D., Costello, J.F., et al. (2008). miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6, 14–30.Google Scholar
  130. Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res 63, 5821–5828.Google Scholar
  131. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396–401.Google Scholar
  132. Soeda, A., Inagaki, A., Oka, N., Ikegame, Y., Aoki, H., Yoshimura, S., Nakashima, S., Kunisada, T., and Iwama, T. (2008). Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 283, 10958–10966.Google Scholar
  133. Soeda, A., Park, M., Lee, D., Mintz, A., Androutsellis-Theotokis, A., McKay, R.D., Engh, J., Iwama, T., Kunisada, T., Kassam, A.B., et al. (2009). Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28, 3949–3959.Google Scholar
  134. Solter, D., and Knowles, B.B. (1978). Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A 75, 5565–5569.Google Scholar
  135. Son, M.J., Woolard, K., Nam, D.H., Lee, J., and Fine, H.A. (2009). SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4, 440–452.Google Scholar
  136. Stoeck, A., Gast, D., Sanderson, M.P., Issa, Y., Gutwein, P., and Altevogt, P. (2007). L1-CAM in a membrane-bound or soluble form augments protection from apoptosis in ovarian carcinoma cells. Gynecol Oncol 104, 461–469.Google Scholar
  137. Studer, L., Csete, M., Lee, S.H., Kabbani, N., Walikonis, J., Wold, B., and McKay, R. (2000). Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20, 7377–7383.Google Scholar
  138. Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., et al, and the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, and the National Cancer Institute of Canada Clinical Trials Group. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352, 987–996.Google Scholar
  139. Sun, P., Xia, S., Lal, B., Eberhart, C.G., Quinones-Hinojosa, A., Maciaczyk, J., Matsui, W., Dimeco, F., Piccirillo, S.M., Vescovi, A. L., et al. (2009). DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 27, 1473–1486.Google Scholar
  140. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.Google Scholar
  141. Tavazoie, M., Van der Veken, L., Silva-Vargas, V., Louissaint, M., Colonna, L., Zaidi, B., Garcia-Verdugo, J.M., and Doetsch, F. (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279–288.Google Scholar
  142. Tay, Y., Zhang, J., Thomson, A.M., Lim, B., and Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128.Google Scholar
  143. Tchoghandjian, A., Baeza, N., Colin, C., Cayre, M., Metellus, P., Beclin, C., Ouafik, L., and Figarella-Branger, D. (2010). A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol 20, 211–221.Google Scholar
  144. Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890.Google Scholar
  145. Thomas, K.R., and Capecchi, M.R. (1990). Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850.Google Scholar
  146. Thompson, M.C., Fuller, C., Hogg, T.L., Dalton, J., Finkelstein, D., Lau, C.C., Chintagumpala, M., Adesina, A., Ashley, D.M., Kellie, S. J., et al. (2006). Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24, 1924–1931.Google Scholar
  147. Vescovi, A.L., Galli, R., and Reynolds, B.A. (2006). Brain tumour stem cells. Nat Rev Cancer 6, 425–436.Google Scholar
  148. Vorechovský, I., Tingby, O., Hartman, M., Strömberg, B., Nister, M., Collins, V.P., and Toftgård, R. (1997). Somatic mutations in the human homologue of Drosophila patched in primitive neuroectodermal tumours. Oncogene 15, 361–366.Google Scholar
  149. Vredenburgh, J.J., Desjardins, A., Herndon, J.E. 2nd, Dowell, J.M., Reardon, D.A., Quinn, J.A., Rich, J.N., Sathornsumetee, S., Gururangan, S., Wagner, M., et al. (2007a). Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13, 1253–1259.Google Scholar
  150. Vredenburgh, J.J., Desjardins, A., Herndon, J.E. 2nd, Marcello, J., Reardon, D.A., Quinn, J.A., Rich, J.N., Sathornsumetee, S., Gururangan, S., Sampson, J., et al. (2007b). Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25, 4722–4729.Google Scholar
  151. Wang, H., Lathia, J.D., Wu, Q., Wang, J., Li, Z., Heddleston, J.M., Eyler, C.E., Elderbroom, J., Gallagher, J., Schuschu, J., et al. (2009). Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27, 2393–2404.Google Scholar
  152. Wang, J., Wakeman, T.P., Lathia, J.D., Hjelmeland, A.B., Wang, X.F., White, R.R., Rich, J.N., and Sullenger, B.A. (2010). Notch promotes radioresistance of glioma stem cells. Stem Cells 28, 17–28.Google Scholar
  153. Wang, J., Wang, H., Li, Z., Wu, Q., Lathia, J.D., McLendon, R.E., Hjelmeland, A.B., Rich, J.N., and Klefstrom, J. (2008). c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE 3, e3769.Google Scholar
  154. Ward, R.J., Lee, L., Graham, K., Satkunendran, T., Yoshikawa, K., Ling, E., Harper, L., Austin, R., Nieuwenhuis, E., Clarke, I.D., et al. (2009). Multipotent CD15 + cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 69, 4682–4690.Google Scholar
  155. Wei, J., Barr, J., Kong, L.Y., Wang, Y., Wu, A., Sharma, A.K., Gumin, J., Henry, V., Colman, H., Priebe, W., et al. (2010). Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9, 67–78.Google Scholar
  156. Wen, P.Y., and Kesari, S. (2008). Malignant gliomas in adults. N Engl J Med 359, 492–507.Google Scholar
  157. Westbrook, T.F., Hu, G., Ang, X.L., Mulligan, P., Pavlova, N.N., Liang, A., Leng, Y., Maehr, R., Shi, Y., Harper, J.W., et al. (2008). SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452, 370–374.Google Scholar
  158. Wick, W., Naumann, U., and Weller, M. (2006). Transforming growth factor-beta: a molecular target for the future therapy of glioblastoma. Curr Pharm Des 12, 341–349.Google Scholar
  159. Williams, C.K., Segarra, M., Sierra, M.L., Sainson, R.C., Tosato, G., and Harris, A.L. (2008). Regulation of CXCR4 by the Notch ligand delta-like 4 in endothelial cells. Cancer Res 68, 1889–1895.Google Scholar
  160. Woodward, W.A., Chen, M.S., Behbod, F., Alfaro, M.P., Buchholz, T. A., and Rosen, J.M. (2007). WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104, 618–623.Google Scholar
  161. Xu, Q., Yuan, X., Liu, G., Black, K.L., and Yu, J.S. (2008). Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells 26, 3018–3026.Google Scholar
  162. Yan, M., Callahan, C.A., Beyer, J.C., Allamneni, K.P., Zhang, G., Ridgway, J.B., Niessen, K., and Plowman, G.D. (2010). Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6–E7.Google Scholar
  163. Yauch, R.L., Dijkgraaf, G.J., Alicke, B., Januario, T., Ahn, C.P., Holcomb, T., Pujara, K., Stinson, J., Callahan, C.A., Tang, T., et al (2009). Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574.Google Scholar
  164. Yokota, N., Nishizawa, S., Ohta, S., Date, H., Sugimura, H., Namba, H., and Maekawa, M. (2002). Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 101, 198–201.Google Scholar
  165. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., and Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241.Google Scholar
  166. Zhang, P., Lathia, J.D., Flavahan, W.A., Rich, J.N., Mattson, M.P. (2009). Squelching glioblastoma stem cells by targeting REST for proteasomal degradation. Trends Neurosci 32, 559–565.Google Scholar
  167. Zheng, H., Ying, H., Yan, H., Kimmelman, A.C., Hiller, D.J., Chen, A.J. et al. (2008b). Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harbor symp on Quanti Biol 73, 427–437.Google Scholar
  168. Zheng, H., Ying, H., Yan, H., Kimmelman, A.C., Hiller, D.J., Chen, A. J., Perry, S.R., Tonon, G., Chu, G.C., Ding, Z., et al. (2008a). p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455, 1129–1133.Google Scholar
  169. Zhou, B.B., Zhang, H., Damelin, M., Geles, K.G., Grindley, J.C., and Dirks, P.B. (2009). Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8, 806–823.Google Scholar
  170. Zhu, L., Gibson, P., Currle, D.S., Tong, Y., Richardson, R.J., Bayazitov, I.T., Poppleton, H., Zakharenko, S., Ellison, D.W., and Gilbertson, R.J. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457, 603–607.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhi Huang
    • 1
  • Lin Cheng
    • 1
  • Olga A. Guryanova
    • 1
  • Qiulian Wu
    • 1
  • Shideng Bao
    • 1
  1. 1.Department of Stem Cell Biology and Regenerative MedicineLerner Research Institute, Cleveland ClinicClevelandUSA

Personalised recommendations