Protein & Cell

, Volume 1, Issue 7, pp 621–626 | Cite as

Engineering of a genome-reduced host: practical application of synthetic biology in the overproduction of desired secondary metabolites

  • Hong Gao
  • Ying Zhuo
  • Elizabeth Ashforth
  • Lixin Zhang


Synthetic biology aims to design and build new biological systems with desirable properties, providing the foundation for the biosynthesis of secondary metabolites. The most prominent representation of synthetic biology has been used in microbial engineering by recombinant DNA technology. However, there are advantages of using a deleted host, and therefore an increasing number of biotechnology studies follow similar strategies to dissect cellular networks and construct genomereduced microbes. This review will give an overview of the strategies used for constructing and engineering reduced-genome factories by synthetic biology to improve production of secondary metabolites.


synthetic biology reduced-genome secondary metabolite 


  1. Agapakis, C.M., and Silver, P.A. (2009). Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. Mol Biosyst 5, 704–713.CrossRefGoogle Scholar
  2. Aho, A.C., Donner, K., Hydén, C., Larsen, L.O., and Reuter, T. (1988). Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334, 348–350.CrossRefGoogle Scholar
  3. Anné, J., and Van Mellaert, L. (1993). Streptomyces lividans as host for heterologous protein production. FEMS Microbiol Lett 114, 121–128.CrossRefGoogle Scholar
  4. Bérdy, J. (2005). Bioactive microbial metabolites. J Antibiot (Tokyo) 58, 1–26.CrossRefGoogle Scholar
  5. Brawner, M., Poste, G., Rosenberg, M., and Westpheling, J. (1991). Streptomyces: a host for heterologous gene expression. Curr Opin Biotechnol 2, 674–681.CrossRefGoogle Scholar
  6. Cello, J., Paul, A.V., and Wimmer, E. (2002). Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018.CrossRefGoogle Scholar
  7. Chakiath, C.S., and Esposito, D. (2007). Improved recombinational stability of lentiviral expression vectors using reduced-genome Escherichia coli. Biotechniques 43, 466, 468, 470.CrossRefGoogle Scholar
  8. Chen, Y., Smanski, M.J., and Shen, B. (2010). Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86, 19–25.CrossRefGoogle Scholar
  9. Debabov, V.G. (2003). The threonine story. Adv Biochem Eng Biotechnol 79, 113–136.Google Scholar
  10. Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann, R.D., Bult, C.J., Kerlavage, A.R., Sutton, G., Kelley, J.M., et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.CrossRefGoogle Scholar
  11. Fujio, T. (2007). Minimum genome factory: innovation in bioprocesses through genome science. Biotechnol Appl Biochem 46, 145–146.CrossRefGoogle Scholar
  12. Gao, H., Zhou, X., Gou, Z., Zhuo, Y., Fu, C., Liu, M., Song, F., Ashforth, E., and Zhang, L. (2010). Rational design for overproduction of desirable microbial metabolites by precision engineering. Antonie van Leeuwenhoek. In press.Google Scholar
  13. Gil, R., Silva, F.J., Peretó, J., and Moya, A. (2004). Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68, 518–537.CrossRefGoogle Scholar
  14. Harada, K. (2004). Production of secondary metabolites by freshwater cyanobacteria. Chem Pharm Bull (Tokyo) 52, 889–899.CrossRefGoogle Scholar
  15. Horsman, G.P., Van Lanen, S.G., and Shen, B. (2009). Iterative type I polyketide synthases for enediyne core biosynthesis. Methods Enzymol 459, 97–112.CrossRefGoogle Scholar
  16. Huang, K.X., Xia, L., Zhang, Y., Ding, X., and Zahn, J.A. (2009). Recent advances in the biochemistry of spinosyns. Appl Microbiol Biotechnol 82, 13–23.CrossRefGoogle Scholar
  17. Jin, Z.H., Xu, B., Lin, S.Z., Jin, Q.C., and Cen, P.L. (2009). Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 159, 655–663.CrossRefGoogle Scholar
  18. Komatsu, M., Uchiyama, T., Omura, S., Cane, D.E., and Ikeda, H. (2010). Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107, 2646–2651.CrossRefGoogle Scholar
  19. Koonin, E.V. (2003). Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1, 127–136.CrossRefGoogle Scholar
  20. Kwok, R. (2010). Five hard truths for synthetic biology. Nature 463, 288–290.CrossRefGoogle Scholar
  21. Lee, J.H., Sung, B.H., Kim, M.S., Blattner, F.R., Yoon, B.H., Kim, J.H., and Kim, S.C. (2009). Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact 8, 2.CrossRefGoogle Scholar
  22. Liu, W., Christenson, S.D., Standage, S., and Shen, B. (2002). Biosynthesis of the enediyne antitumor antibiotic C-1027. Science 297, 1170–1173.CrossRefGoogle Scholar
  23. Marner, W.D. 2nd. (2009). Practical application of synthetic biology principles. Biotechnol J 4, 1406–1419.CrossRefGoogle Scholar
  24. Matsushima, P., and Baltz, R. (1994). Transformation of Saccharopolysopora spinosa protoplasts with plasmid DNA modified in vitro to avoid host restriction. Microbiology 140, 139–143.CrossRefGoogle Scholar
  25. Matsushima, P., Broughton, M.C., Turner, J.R., and Baltz, R.H. (1994). Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: effects of chromosomal insertions on macrolide A83543 production. Gene 146, 39–45.CrossRefGoogle Scholar
  26. Mizoguchi, H., Mori, H., and Fujio, T. (2007). Escherichia coli minimum genome factory. Biotechnol Appl Biochem 46, 157–167.CrossRefGoogle Scholar
  27. Mizoguchi, H., Sawano, Y., Kato, J., and Mori, H. (2008). Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res 15, 277–284.CrossRefGoogle Scholar
  28. Morimoto, T., Kadoya, R., Endo, K., Tohata, M., Sawada, K., Liu, S., Ozawa, T., Kodama, T., Kakeshita, H., Kageyama, Y., et al. (2008). Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15, 73–81.CrossRefGoogle Scholar
  29. Murakami, K., Tao, E., Ito, Y., Sugiyama, M., Kaneko, Y., Harashima, S., Sumiya, T., Nakamura, A., and Nishizawa, M. (2007). Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75, 589–597.CrossRefGoogle Scholar
  30. Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M., and Horinouchi, S. (2008). Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190, 4050–4060.CrossRefGoogle Scholar
  31. Pósfai, G., Plunkett, G. 3rd, Fehér, T., Frisch, D., Keil, G.M., Umenhoffer, K., Kolisnychenko, V., Stahl, B., Sharma, S.S., de Arruda, M., et al. (2006). Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046.CrossRefGoogle Scholar
  32. Reichenbach, H. (2001). Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27, 149–156.CrossRefGoogle Scholar
  33. Rokem, J.S., Lantz, A.E., and Nielsen, J. (2007). Systems biology of antibiotic production by microorganisms. Nat Prod Rep 24,1262–1287.CrossRefGoogle Scholar
  34. Sharma, S.S., Blattner, F.R., and Harcum, S.W. (2007). Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 9, 133–141.CrossRefGoogle Scholar
  35. Tian, J., Gong, H., Sheng, N., Zhou, X., Gulari, E., Gao, X., and Church, G. (2004). Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054.CrossRefGoogle Scholar
  36. Wang, L., Hu, Y., Zhang, Y., Wang, S., Cui, Z., Bao, Y., Jiang, W., and Hong, B. (2009). Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globisporus C-1027. BMC Microbiol 9, 14.CrossRefGoogle Scholar
  37. Zhuo, Y., Zhang, W., Chen, D., Gao, H., Tao, J., Liu, M., Gou, Z., Zhou, X., BC, Y., Zhang, Q., et al. (2010). Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc Natl Acad Sci U S A. In press.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hong Gao
    • 1
  • Ying Zhuo
    • 1
    • 2
  • Elizabeth Ashforth
    • 1
  • Lixin Zhang
    • 1
  1. 1.CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of MicrobiologyChinese Academy of Sciences (CAS)BeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations