Protein & Cell

, Volume 1, Issue 6, pp 520–536 | Cite as

The next-generation sequencing technology and application



As one of the key technologies in biomedical research, DNA sequencing has not only improved its productivity with an exponential growth rate but also been applied to new areas of application over the past few years. This is largely due to the advent of newer generations of sequencing platforms, offering ever-faster and cheaper ways to analyze sequences. In our previous review, we looked into technical characteristics of the next-generation sequencers and provided prospective insights into their future development. In this article, we present a brief overview of the advantages and shortcomings of key commercially available platforms with a focus on their suitability for a broad range of applications.


next-generation sequencing technology RNA-seq ChIP-seq metagenome transcriptome epigenome 


  1. Adessi, C., Matton, G., Ayala, G., Turcatti, G., Mermod, J.J., Mayer, P., and Kawashima, E. (2000). Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res 28, E87.Google Scholar
  2. Ahn, S.M., Kim, T.H., Lee, S., Kim, D., Ghang, H., Kim, D.S., Kim, B.C., Kim, S.Y., Kim, W.Y., Kim, C., et al. (2009). The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res 19, 1622–1629.Google Scholar
  3. Ansorge, W.J. (2009). Next-generation DNA sequencing techniques. New Biotechnol 25, 195–203.Google Scholar
  4. Aparicio, O., Geisberg, J.V., and Struhl, K. (2004). Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Cell Biol Chapter 17, Unit 17 17.Google Scholar
  5. Armisen, J., Gilchrist, M.J., Wilczynska, A., Standart, N., and Miska, E.A. (2009). Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res 19, 1766–1775.Google Scholar
  6. Axtell, M.J., Jan, C., Rajagopalan, R., and Bartel, D.P. (2006). A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577.Google Scholar
  7. Barakat, A., Wall, K., Leebens-Mack, J., Wang, Y.J., Carlson, J.E., and Depamphilis, C.W. (2007). Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51, 991–1003.Google Scholar
  8. Bentley, D.R. (2006). Whole-genome re-sequencing. Curr Opin Genet Dev 16, 545–552.Google Scholar
  9. Berezikov, E., Thuemmler, F., van Laake, L.W., Kondova, I., Bontrop, R., Cuppen, E., and Plasterk, R.H. (2006). Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38, 1375–1377.Google Scholar
  10. Blow, N. (2008). DNA sequencing: generation next-next. Nat Methods 5, 267–274.Google Scholar
  11. Bormann Chung, C.A., Boyd, V.L., McKernan, K.J., Fu, Y.T., Monighetti, C., Peckham, H.E., Barker, M., and Khanin, R. (2010). Whole methylome analysis by ultra-deep sequencing using two-base encoding. PLoS ONE 5, e9320.Google Scholar
  12. Braslavsky, I., Hebert, B., Kartalov, E., and Quake, S.R. (2003). Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci U S A 100, 3960–3964.Google Scholar
  13. Brent, M.R. (2008). Steady progress and recent breakthroughs in the accuracy of automated genome annotation. Nat Rev Genet 9, 62–73.Google Scholar
  14. Burnside, J., Bernberg, E., Anderson, A., Lu, C., Meyers, B.C., Green, P.J., Jain, N., Isaacs, G., and Morgan, R.W. (2006). Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 80, 8778–8786.Google Scholar
  15. Choi, M., Scholl, U.I., Ji, W.Z., Liu, T.W., Tikhonova, I.R., Zumbo, P., Nayir, A., Bakkaloğlu, A., Ozen, S., Sanjad, S., et al. (2009). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106, 19096–19101.Google Scholar
  16. Cloonan, N., Forrest, A.R.R., Kolle, G., Gardiner, B.B.A., Faulkner, G. J., Brown, M.K., Taylor, D.F., Steptoe, A.L., Wani, S., Bethel, G., et al. (2008). Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5, 613–619.Google Scholar
  17. Cokus, S.J., Feng, S.H., Zhang, X.Y., Chen, Z.G., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M., and Jacobsen, S.E. (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219.Google Scholar
  18. Costello, J.F., Krzywinski, M., and Marra, M.A. (2009). A first look at entire human methylomes. Nat Biotechnol 27, 1130–1132.Google Scholar
  19. Dahl, F., Stenberg, J., Fredriksson, S., Welch, K., Zhang, M., Nilsson, M., Bicknell, D., Bodmer, W.F., Davis, R.W., and Ji, H.L. (2007). Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc Natl Acad Sci U S A 104, 9387–9392.Google Scholar
  20. Davies, K. (2007). Next-Generation Sequencing: Scientific and Commercial Implications of the $1000 Genome (Insight Pharma Reports)Google Scholar
  21. Denver, D.R., Dolan, P.C., Wilhelm, L.J., Sung, W., Lucas-Lledó, J.I., Howe, D.K., Lewis, S.C., Okamoto, K., Thomas, W.K., Lynch, M., et al. (2009). A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc Natl Acad Sci U S A 106, 16310–16314.Google Scholar
  22. Diguistini, S., Liao, N.Y., Platt, D., Robertson, G., Seidel, M., Chan, S. K., Docking, T.R., Birol, I., Holt, R.A., Hirst, M., et al. (2009). De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biol 10, R94.Google Scholar
  23. Dracatos, P.M., Cogan, N.O.I., Sawbridge, T.I., Gendall, A.R., Smith, K.F., Spangenberg, G.C., and Forster, J.W. (2009). Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biol 9, 62.Google Scholar
  24. Dressman, D., Yan, H., Traverso, G., Kinzler, K.W., and Vogelstein, B. (2003). Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 100, 8817–8822.Google Scholar
  25. Durfee, T., Nelson, R., Baldwin, S., Plunkett, G. 3rd, Burland, V., Mau, B., Petrosino, J.F., Qin, X., Muzny, D.M., Ayele, M., et al. (2008). The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190, 2597–2606.Google Scholar
  26. Edwards, R.A., Rodriguez-Brito, B., Wegley, L., Haynes, M., Breitbart, M., Peterson, D.M., Saar, M.O., Alexander, S., Alexander, E.C. Jr, and Rohwer, F. (2006). Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7, 57.Google Scholar
  27. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138.Google Scholar
  28. Fedurco, M., Romieu, A., Williams, S., Lawrence, I., and Turcatti, G. (2006). BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res 34, e22.Google Scholar
  29. Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone, C., Jones, R., Robeson, M., Edwards, R.A., Felts, B., Rayhawk, S., et al. (2007). Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73, 7059–7066.Google Scholar
  30. Gilbert, W. (1981). DNA sequencing and gene structure Nobel lecture, 8 December 1980. Biosci Rep 1, 353–375.Google Scholar
  31. Girard, A., Sachidanandam, R., Hannon, G.J., and Carmell, M.A. (2006). A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202.Google Scholar
  32. Glazov, E.A., Cottee, P.A., Barris, W.C., Moore, R.J., Dalrymple, B.P., and Tizard, M.L. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res 18, 957–964.Google Scholar
  33. Goldberg, S.M.D., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman, R., Halpern, A., Khouri, H., Kravitz, S.A., Lauro, F.M., et al. (2006). A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci U S A 103, 11240–11245.Google Scholar
  34. Goossens, D., Moens, L.N., Nelis, E., Lenaerts, A.S., Glassee, W., Kalbe, A., Frey, B., Kopal, G., De Jonghe, P., De Rijk, P., et al. (2009). Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR-based GS-FLX sequencing. Hum Mutat 30, 472–476.Google Scholar
  35. Harismendy, O., and Frazer, K.A. (2009). Method for improving sequence coverage uniformity of targeted genomic intervals amplified by LR-PCR using Illumina GA sequencing-by-synthesis technology. Biotechniques 46, 229–231.Google Scholar
  36. Harismendy, O., Ng, P.C., Strausberg, R.L., Wang, X.Y., Stockwell, T.B., Beeson, K.Y., Schork, N.J., Murray, S.S., Topol, E.J., Levy, S., et al. (2009). Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol 10, R32.Google Scholar
  37. Harris, T.D., Buzby, P.R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., Causey, M., Colonell, J., Dimeo, J., Efcavitch, J. W., et al. (2008). Single-molecule DNA sequencing of a viral genome. Science 320, 106–109.Google Scholar
  38. Henderson, I.R., Zhang, X.Y., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38, 721–725.Google Scholar
  39. Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M.N., Smith, S.W., Middle, C.M., Rodesch, M.J., Albert, T.J., Hannon, G.J., et al. (2007). Genome-wide in situ exon capture for selective resequencing. Nat Genet 39, 1522–1527.Google Scholar
  40. Housby, J.N., and Southern, E.M. (1998). Fidelity of DNA ligation: a novel experimental approach based on the polymerisation of libraries of oligonucleotides. Nucleic Acids Res 26, 4259–4266.Google Scholar
  41. Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, H., Filippov, D.V., Blaser, H., Raz, E., Moens, C.B., et al. (2007). A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82.Google Scholar
  42. Huang, S.W., Li, R.Q., Zhang, Z.H., Li, L., Gu, X.F., Fan, W., Lucas, W.J., Wang, X.W., Xie, B.Y., Ni, P.X., et al. (2009). The genome of the cucumber, Cucumis sativus L. Nat Genet 41, 1275–1281.Google Scholar
  43. Huber, J.A., Mark Welch, D.B., Morrison, H.G., Huse, S.M., Neal, P. R., Butterfield, D.A., and Sogin, M.L. (2007). Microbial population structures in the deep marine biosphere. Science 318, 97–100.Google Scholar
  44. Imelfort, M., and Edwards, D. (2009). De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10, 609–618.Google Scholar
  45. Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G. S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G., and Goodman, R.H. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054.Google Scholar
  46. Jacquier, A. (2009). The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10, 833–844.Google Scholar
  47. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502.Google Scholar
  48. Johnson, S.M., Tan, F.J., McCullough, H.L., Riordan, D.P., and Fire, A.Z. (2006). Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res 16, 1505–1516.Google Scholar
  49. Kim, J.I., Ju, Y.S., Park, H., Kim, S., Lee, S., Yi, J.H., Mudge, J., Miller, N.A., Hong, D., Bell, C.J., et al. (2009). A highly annotated wholegenome sequence of a Korean individual. Nature 460, 1011–1015.Google Scholar
  50. Korlach, J., Marks, P.J., Cicero, R.L., Gray, J.J., Murphy, D.L., Roitman, D.B., Pham, T.T., Otto, G.A., Foquet, M., and Turner, S. W. (2008). Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A 105, 1176–1181.Google Scholar
  51. Lander, E.S., and Waterman, M.S. (1988). Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239.Google Scholar
  52. Lau, N.C., Seto, A.G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D.P., and Kingston, R.E. (2006). Characterization of the piRNA complex from rat testes. Science 313, 363–367.Google Scholar
  53. Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., and Webb, W.W. (2003). Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686.Google Scholar
  54. Levy, S., Sutton, G., Ng, P.C., Feuk, L., Halpern, A.L., Walenz, B.P., Axelrod, N., Huang, J., Kirkness, E.F., Denisov, G., et al. (2007). The diploid genome sequence of an individual human. PLoS Biol 5, e254.Google Scholar
  55. Li, R.Q., Fan, W., Tian, G., Zhu, H.M., He, L., Cai, J., Huang, Q.F., Cai, Q.L., Li, B., Bai, Y.Q., et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317.Google Scholar
  56. Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., and Ecker, J.R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536.Google Scholar
  57. Lu, C., Kulkarni, K., Souret, F.F., MuthuValliappan, R., Tej, S.S., Poethig, R.S., Henderson, I.R., Jacobsen, S.E., Wang, W., Green, P.J., et al. (2006). MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16, 1276–1288.Google Scholar
  58. Lupski, J.R., Reid, J.G., Gonzaga-Jauregui, C., Rio Deiros, D., Chen, D.C.Y., Nazareth, L., Bainbridge, M., Dinh, H., Jing, C., Wheeler, D. A., et al. (2010). Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 362, 1181–1191.Google Scholar
  59. Mardis, E.R. (2008). Next-generation DNA sequencing methods. Annu Rev Genom Hum G 9, 387–402.Google Scholar
  60. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z.T., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.Google Scholar
  61. Mckernan, K., Blanchard, A., Kotler, L., and Costa, G. (2006). Reagents, methods, and libraries for bead-based sequencing. US patent application 20080003571.Google Scholar
  62. McKernan, K.J., Peckham, H.E., Costa, G.L., McLaughlin, S.F., Fu, Y. T., Tsung, E.F., Clouser, C.R., Duncan, C., Ichikawa, J.K., Lee, C. C., et al. (2009). Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res 19, 1527–1541.Google Scholar
  63. Metzker, M.L. (2010). Sequencing technologies — the next generation. Nat Rev Genet 11, 31–46.Google Scholar
  64. Mikkelsen, T.S., Ku, M.C., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., et al (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.Google Scholar
  65. Moore, G.E. (1998). Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114–117, April 19, 1965). P Ieee 86, 82–85.Google Scholar
  66. Morin, R.D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T.J., McDonald, H., Varhol, R., Jones, S.J.M., and Marra, M.A. (2008a). Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 45, 81–94.Google Scholar
  67. Morin, R.D., O’Connor, M.D., Griffith, M., Kuchenbauer, F., Delaney, A., Prabhu, A.L., Zhao, Y., McDonald, H., Zeng, T., Hirst, M., et al. (2008b). Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18, 610–621.Google Scholar
  68. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621–628.Google Scholar
  69. Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., and Snyder, M. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349.Google Scholar
  70. Ng, S.B., Buckingham, K.J., Lee, C., Bigham, A.W., Tabor, H.K., Dent, K.M., Huff, C.D., Shannon, P.T., Jabs, E.W., Nickerson, D.A., et al. (2010). Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42, 30–35.Google Scholar
  71. Ossowski, S., Schneeberger, K., Clark, R.M., Lanz, C., Warthmann, N., and Weigel, D. (2008). Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18, 2024–2033.Google Scholar
  72. Pang, M.X., Woodward, A.W., Agarwal, V., Guan, X.Y., Ha, M., Ramachandran, V., Chen, X.M., Triplett, B.A., Stelly, D.M., and Chen, Z.J. (2009). Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 10, R122.Google Scholar
  73. Pleasance, E.D., Stephens, P.J., O’Meara, S., McBride, D.J., Meynert, A., Jones, D., Lin, M.L., Beare, D., Lau, K.W., Greenman, C., et al. (2010). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190.Google Scholar
  74. Porreca, G.J., Zhang, K., Li, J.B., Xie, B., Austin, D., Vassallo, S.L., LeProust, E.M., Peck, B.J., Emig, C.J., Dahl, F., et al. (2007). Multiplex amplification of large sets of human exons. Nat Methods 4, 931–936.Google Scholar
  75. Pushkarev, D., Neff, N.F., and Quake, S.R. (2009). Single-molecule sequencing of an individual human genome. Nat Biotechnol 27, 847–852.Google Scholar
  76. Qin, J.J., Li, R.Q., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al, and the MetaHIT Consortium. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.Google Scholar
  77. Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20, 3407–3425.Google Scholar
  78. Reinhardt, J.A., Baltrus, D.A., Nishimura, M.T., Jeck, W.R., Jones, C. D., and Dangl, J.L. (2009). De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19, 294–305.Google Scholar
  79. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y.J., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., et al. (2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4, 651–657.Google Scholar
  80. Rothberg, J.M., and Leamon, J.H. (2008). The development and impact of 454 sequencing. Nat Biotechnol 26, 1117–1124.Google Scholar
  81. Sanger, F., and Coulson, A.R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94, 441–448.Google Scholar
  82. Shendure, J., and Ji, H.L. (2008). Next-generation DNA sequencing. Nat Biotechnol 26, 1135–1145.Google Scholar
  83. Shendure, J., Mitra, R.D., Varma, C., and Church, G.M. (2004). Advanced sequencing technologies: methods and goals. Nat Rev Genet 5, 335–344.Google Scholar
  84. Shendure, J., Porreca, G.J., Reppas, N.B., Lin, X.X., McCutcheon, J. P., Rosenbaum, A.M., Wang, M.D., Zhang, K., Mitra, R.D., and Church, G.M. (2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732.Google Scholar
  85. Smith, Z.D., Gu, H.C., Bock, C., Gnirke, A., and Meissner, A. (2009). High-throughput bisulfite sequencing in mammalian genomes. Methods 48, 226–232.Google Scholar
  86. Stoeckius, M., Maaskola, J., Colombo, T., Rahn, H.P., Friedländer, M. R., Li, N., Chen, W., Piano, F., and Rajewsky, N. (2009). Largescale sorting of C. elegans embryos reveals the dynamics of small RNA expression. Nat Methods 6, 745–751.Google Scholar
  87. Sugarbaker, D.J., Richards, W.G., Gordon, G.J., Dong, L., De Rienzo, A., Maulik, G., Glickman, J.N., Chirieac, L.R., Hartman, M.L., Taillon, B.E., et al. (2008). Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci U S A 105, 3521–3526.Google Scholar
  88. Sultan, M., Schulz, M.H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina, T., Soldatov, A., Parkhomchuk, D., et al. (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960.Google Scholar
  89. Tang, F.C., Barbacioru, C., Nordman, E., Li, B., Xu, N.L., Bashkirov, V. I., Lao, K.Q., and Surani, M.A. (2010). RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5, 516–535.Google Scholar
  90. Taylor, K.H., Kramer, R.S., Davis, J.W., Guo, J., Duff, D.J., Xu, D., Caldwell, C.W., and Shi, H. (2007). Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67, 8511–8518.Google Scholar
  91. Tettelin, H., and Feldblyum, T. (2009). Bacterial genome sequencing. Methods Mol Biol 551, 231–247.Google Scholar
  92. Tewhey, R., Warner, J.B., Nakano, M., Libby, B., Medkova, M., David, P.H., Kotsopoulos, S.K., Samuels, M.L., Hutchison, J.B., Larson, J. W., et al. (2009). Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27, 1025–1031.Google Scholar
  93. Toth, A.L., Varala, K., Newman, T.C., Miguez, F.E., Hutchison, S.K., Willoughby, D.A., Simons, J.F., Egholm, M., Hunt, J.H., Hudson, M. E., et al. (2007). Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318, 441–444.Google Scholar
  94. Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. (2007). The human microbiome project. Nature 449, 804–810.Google Scholar
  95. Turner, D.J., Keane, T.M., Sudbery, I., and Adams, D.J. (2009a). Nextgeneration sequencing of vertebrate experimental organisms. Mamm Genome 20, 327–338.Google Scholar
  96. Turner, E.H., Lee, C.L., Ng, S.B., Nickerson, D.A., and Shendure, J. (2009b). Massively parallel exon capture and library-free resequencing across 16 genomes. Nat Methods 6, 315–316.Google Scholar
  97. Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., Fitzgerald, L.M., Vezzulli, S., Reid, J., et al. (2007). A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326.Google Scholar
  98. Wang, J., Wang, W., Li, R.Q., Li, Y.R., Tian, G., Goodman, L., Fan, W., Zhang, J.Q., Li, J., Zhang, J.B., et al. (2008). The diploid genome sequence of an Asian individual. Nature 456, 60–65.Google Scholar
  99. Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10, 57–63.Google Scholar
  100. Wheeler, D.A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y.J., Makhijani, V., Roth, G.T., et al (2008). The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876.Google Scholar
  101. Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J., and Bähler, J. (2008). Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243.Google Scholar
  102. Xia, Q.Y., Guo, Y.R., Zhang, Z., Li, D., Xuan, Z.L., Li, Z., Dai, F.Y., Li, Y. R., Cheng, D.J., Li, R.Q., et al. (2009). Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 326, 433–436.Google Scholar
  103. Yao, Y.Y., Guo, G.G., Ni, Z.F., Sunkar, R., Du, J.K., Zhu, J.K., and Sun, Q.X. (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8, R96.Google Scholar
  104. Zhao, T., Li, G.L., Mi, S.J., Li, S., Hannon, G.J., Wang, X.J., and Qi, Y. J. (2007). A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21, 1190–1203.Google Scholar
  105. Zhou, X.G., Ren, L.F., Li, Y.T., Zhang, M., Yu, Y.D., and Yu, J. (2010). Next-generation sequencing technology: A technology review and future perspective. Sci China C Life Sci 53, 44–57.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory of Genome Sciences and Information, Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  2. 2.Institute of SemiconductorChinese Academy of SciencesBeijingChina
  3. 3.The Joint Laboratory of Bioinformation Acquisition and Sensing TechnologyBeijingChina

Personalised recommendations