Monoclonal antibodies — a proven and rapidly expanding therapeutic modality for human diseases
- 679 Downloads
- 30 Citations
Abstract
The study of antibodies has been a focal point in modern biology and medicine since the early 1900s. However, progress in therapeutic antibody development was slow and intermittent until recently. The first antibody therapy, murine-derived murononab OKT3 for acute organ rejection, was approved by the US Food and Drug Administration (FDA) in 1986, more than a decade after César Milstein and Georges Köhler developed methods for the isolation of mouse monoclonal antibodies from hybridoma cells in 1975. As a result of the scientific, technological, and clinical breakthroughs in the 1980s and 1990s, the pace of therapeutic antibody discovery and development accelerated. Antibodies are becoming a major drug modality with more than two dozen therapeutic antibodies in the clinic and hundreds more in development. Despite the progress, need for improvement exists at every level. Antibody therapeutics provides fertile ground for protein scientists to fulfill the dream of personalized medicine through basic scientific discovery and technological innovation.
Keywords
monoclonal antibodies personalized medicine therapeutic antibodiesReferences
- Albanell, J., and Baselga, J. (1999). Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today (Barc) 35, 931–946.Google Scholar
- An, Z. (2009). Therapeutic monoclonal antibodies: from bench to clinic, Hoboken, NJ: John Wiley and Sons.CrossRefGoogle Scholar
- An, Z., Forrest, G., Moore, R., Cukan, M., Haytko, P., Huang, L., Vitelli, S., Zhao, J.Z., Lu, P., Hua, J., et al. (2009). IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs 1, 572–579.CrossRefPubMedPubMedCentralGoogle Scholar
- Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., and Dwek, R.A. (2007). The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25, 21–50.CrossRefPubMedGoogle Scholar
- Bender, N.K., Heilig, C.E., Dröll, B., Wohlgemuth, J., Armbruster, F.P., and Heilig, B. (2007). Immunogenicity, efficacy and adverse events of adalimumab in RA patients. Rheumatol Int 27, 269–274.CrossRefPubMedGoogle Scholar
- Bostrom, J., Yu, S.F., Kan, D., Appleton, B.A., Lee, C.V., Billeci, K., Man, W., Peale, F., Ross, S., Wiesmann, C., et al. (2009). Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323, 1610–1614.CrossRefPubMedGoogle Scholar
- Carter, P.J. (2006). Potent antibody therapeutics by design. Nat Rev Immunol 6, 343–357.CrossRefPubMedGoogle Scholar
- Chen, S., Yu, L., Jiang, C., Zhao, Y., Sun, D., Li, S., Liao, G., Chen, Y., Fu, Q., Tao, Q., et al. (2005). Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23, 1538–1547.CrossRefPubMedGoogle Scholar
- Chua, Y.J., and Cunningham, D. (2006). Panitumumab. Drugs Today (Barc) 42, 711–719.CrossRefGoogle Scholar
- Cohen, D.J., Benvenisty, A.I., Cianci, J., and Hardy, M.A. (1989). OKT3 prophylaxis in cadaveric kidney transplant recipients with delayed graft function. Am J Kidney Dis 14, 19–27.PubMedGoogle Scholar
- Cohenuram, M., and Saif, M.W. (2007). Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anticancer Drugs 18, 7–15.CrossRefPubMedGoogle Scholar
- Cox, K.M., Sterling, J.D., Regan, J.T., Gasdaska, J.R., Frantz, K.K., Peele, C.G., Black, A., Passmore, D., Moldovan-Loomis, C., Srinivasan, M., et al. (2006). Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24, 1591–1597.CrossRefPubMedGoogle Scholar
- Davies, A.J. (2004). Tositumomab and iodine [131I] tositumomab in the management of follicular lymphoma. iAn oncologist’s view. Q J Nucl Med Mol Imaging 48, 305–316.PubMedGoogle Scholar
- Ducry, L., and Stump, B. (2010). Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21, 5–13.CrossRefPubMedGoogle Scholar
- Ehrlich, P. (1908). Partial cell functions—Nobel lecture, December 11, 1908 in Physiology or Medicine: including presentation speeches and laureates’ biographies. Amsterdam, 1967: Elsevier Publisher.Google Scholar
- Enever, C., Batuwangala, T., Plummer, C., and Sepp, A. (2009). Next generation immunotherapeutics—honing the magic bullet. Curr Opin Biotechnol 20, 405–411.CrossRefPubMedGoogle Scholar
- Faulds, D., and Sorkin, E.M. (1994). Abciximab (c7E3 Fab). A review of its pharmacology and therapeutic potential in ischaemic heart disease. Drugs 48, 583–598.CrossRefPubMedGoogle Scholar
- Feldhaus, M.J., Siegel, R.W., Opresko, L.K., Coleman, J.R., Feldhaus, J.M., Yeung, Y.A., Cochran, J.R., Heinzelman, P., Colby, D., Swers, J., et al. (2003). Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21, 163–170.CrossRefPubMedGoogle Scholar
- Ferrajoli, A., O’Brien, S., and Keating, M.J. (2001). Alemtuzumab: a novel monoclonal antibody. Expert Opin Biol Ther 1, 1059–1065.CrossRefPubMedGoogle Scholar
- Gaza-Bulseco, G., Faldu, S., Hurkmans, K., Chumsae, C., and Liu, H. (2008). Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein A and protein G. J Chromatogr B Analyt Technol Biomed Life Sci 870, 55–62.CrossRefPubMedGoogle Scholar
- Gauvreau, G.M., Becker, A.B., Boulet, L.P., Chakir, J., Fick, R.B., Greene, W.L., Killian, K.J., O’Byrne P, M., Reid, J.K., and Cockcroft, D.W. (2003). The effects of an anti-CD11a mAb, efalizumab, on allergen-induced airway responses and airway inflammation in subjects with atopic asthma. J Allergy Clin Immunol 112, 331–338.CrossRefPubMedGoogle Scholar
- Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H.R., and Plückthun, A. (1998). Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci U S A 95, 14130–14135.CrossRefPubMedPubMedCentralGoogle Scholar
- Harvey, B.R., Georgiou, G., Hayhurst, A., Jeong, K.J., Iverson, B.L., and Rogers, G.K. (2004). Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci U S A 101, 9193–9198.CrossRefPubMedPubMedCentralGoogle Scholar
- Holliger, P., and Hudson, P.J. (2005). Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23, 1126–1136.CrossRefPubMedGoogle Scholar
- Holt, L.J., Herring, C., Jespers, L.S., Woolven, B.P., and Tomlinson, I. M. (2003). Domain antibodies: proteins for therapy. Trends Biotechnol 21, 484–490.CrossRefPubMedGoogle Scholar
- Hoogenboom, H.R. (2005). Selecting and screening recombinant antibody libraries. Nat Biotechnol 23, 1105–1116.CrossRefPubMedGoogle Scholar
- Huang, L., Lu, J., Wroblewski, V.J., Beals, J.M., and Riggin, R.M. (2005). In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77, 1432–1439.CrossRefPubMedGoogle Scholar
- Jakobovits, A., Amado, R.G., Yang, X., Roskos, L., and Schwab, G. (2007). From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol 25, 1134–1143.CrossRefPubMedGoogle Scholar
- James, L.C., Roversi, P., and Tawfik, D.S. (2003). Antibody multispecificity mediated by conformational diversity. Science 299, 1362–1367.CrossRefPubMedGoogle Scholar
- Jin, A., Ozawa, T., Tajiri, K., Obata, T., Kondo, S., Kinoshita, K., Kadowaki, S., Takahashi, K., Sugiyama, T., Kishi, H., et al. (2009). A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat Med 15, 1088–1092.CrossRefPubMedGoogle Scholar
- Kaneko, Y., Nimmerjahn, F., and Ravetch, J.V. (2006). Antiinflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673.CrossRefPubMedGoogle Scholar
- Kenneth, T.E., and Kertes, P.J. (2006). Ranibizumab in neovascular age-related macular degeneration. Clin Interv Aging 1, 451–466.CrossRefPubMedGoogle Scholar
- Kerr, D.J. (2004). Targeting angiogenesis in cancer: clinical development of bevacizumab. Nat Clin Pract Oncol 1, 39–43.CrossRefPubMedGoogle Scholar
- Kettleborough, C.A., Saldanha, J., Heath, V.J., Morrison, C.J., and Bendig, M.M. (1991). Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng 4, 773–783.CrossRefPubMedGoogle Scholar
- Keating, M.J., Dritselis, A., Yasothan, U., and Kirkpatrick, P. (2010). Ofatumumab. Nat Rev Drug Discov 9, 101–102.CrossRefPubMedGoogle Scholar
- Kies, M.S., and Harari, P.M. (2002). Cetuximab (Imclone/Merck/Bristol-Myers Squibb). Curr Opin Investig Drugs 3, 1092–1100.PubMedGoogle Scholar
- Köhler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.CrossRefPubMedGoogle Scholar
- Krasner, C., and Joyce, R.M. (2001). Zevalin: 90yttrium labeled anti-CD20 (ibritumomab tiuxetan), a new treatment for non-Hodgkin’s lymphoma. Curr Pharm Biotechnol 2, 341–349.CrossRefPubMedGoogle Scholar
- Kufer, P., Lutterbüse, R., and Baeuerle, P.A. (2004). A revival of bispecific antibodies. Trends Biotechnol 22, 238–244.CrossRefPubMedGoogle Scholar
- Kwakkenbos, M.J., Diehl, S.A., Yasuda, E., Bakker, A.Q., van Geelen, C.M., Lukens, M.V., van Bleek, G.M., Widjojoatmodjo, M.N., Bogers, W.M., Mei, H., et al. (2010). Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat Med 16, 123–128.CrossRefPubMedGoogle Scholar
- Lee, C.M., Iorno, N., Sierro, F., and Christ, D. (2007). Selection of human antibody fragments by phage display. Nat Protoc 2, 3001–3008.CrossRefPubMedGoogle Scholar
- Li, H., Sethuraman, N., Stadheim, T.A., Zha, D., Prinz, B., Ballew, N., Bobrowicz, P., Choi, B.K., Cook, W.J., Cukan, M., et al. (2006a). Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24, 210–215.CrossRefPubMedGoogle Scholar
- Li, J., Sai, T., Berger, M., Chao, Q., Davidson, D., Deshmukh, G., Drozdowski, B., Ebel, W., Harley, S., Henry, M., et al. (2006b). Human antibodies for immunotherapy development generated via a human B cell hybridoma technology. Proc Natl Acad Sci U S A 103, 3557–3562.CrossRefPubMedPubMedCentralGoogle Scholar
- Lin, S., Shen, Z., Zha, D., Sharkey, N., Prinz, B., Hamilton, S., Pavoor, T.V., Bobrowicz, B., Shaikh, S.S., Rittenhour, A.M., et al. (2010). Selection of Pichia pastoris strains expressing recombinant immunoglobulin G by cell surface labeling. J Immunol Methods.Google Scholar
- Lonberg, N. (2005). Human antibodies from transgenic animals. Nat Biotechnol 23, 1117–1125.CrossRefPubMedGoogle Scholar
- Maloney, D.G., Grillo-Lopez, A.J., White, C.A., Bodkin, D., Schilder, R.J., Neidhart, J.A., Janakiraman, N., Foon, K.A., Liles, T.M., Dallaire, B.K., et al. (1997). IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90, 2188–2195.PubMedGoogle Scholar
- Mimura, Y., Jefferis, R., Mimura-Kimura, Y., Abrahams, J., and Rudd, P.M. (2009). Glycosylation of Therapeutic IgGs. In Therapeutic Monoclonal Antibodies: from Bench to Clinic, An, Z. (ed), pp 67–89. Hoboken, NJ: John Wiley and Sons, Inc.CrossRefGoogle Scholar
- Morrison, S.L., Johnson, M.J., Herzenberg, L.A., and Oi, V.T. (1984). Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81, 6851–6855.CrossRefPubMedPubMedCentralGoogle Scholar
- Nashan, B., Moore, R., Amlot, P., Schmidt, A.G., Abeywickrama, K., and Soulillou, J.P. (1997). Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 350, 1193–1198.CrossRefPubMedGoogle Scholar
- Nelson, A.L., and Reichert, J.M. (2009). Development trends for therapeutic antibody fragments. Nat Biotechnol 27, 331–337.CrossRefPubMedGoogle Scholar
- News (2010). Deal watch: BMS acquires rights for IL-6 inhibitor. Nat Rev Drug Discov 9, 10.Google Scholar
- Ogunniyi, A.O., Story, C.M., Papa, E., Guillen, E., and Love, J.C. (2009). Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat Protoc 4, 767–782.CrossRefPubMedPubMedCentralGoogle Scholar
- Onrust, S.V., and Lamb, H.M. (1998). Infliximab: a review of its use in Crohn’s disease and rheumatoid arthritis. BioDrugs 10, 397–422.CrossRefPubMedGoogle Scholar
- Pappas, D.A., Bathon, J.M., Hanicq, D., Yasothan, U., and Kirkpatrick, P. (2009). Golimumab. Nat Rev Drug Discov 8, 695–696.CrossRefPubMedGoogle Scholar
- Paul-Pletzer, K. (2006). Tocilizumab: blockade of interleukin-6 signaling pathway as a therapeutic strategy for inflammatory disorders. Drugs Today (Barc) 42, 559–576.CrossRefGoogle Scholar
- Pedersen, M.W., Jacobsen, H.J., Koefoed, K., Hey, A., Pyke, C., Haurum, J.S., and Kragh, M. (2010). Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70, 588–597.CrossRefPubMedGoogle Scholar
- Peipp, M., Lammerts van Bueren, J.J., Schneider-Merck, T., Bleeker, W.W., Dechant, M., Beyer, T., Repp, R., van Berkel, P.H., Vink, T., van de Winkel, J.G., et al. (2008). Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 112, 2390–2399.CrossRefPubMedGoogle Scholar
- Reichert, J.M., and Valge-Archer, V.E. (2007). Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6, 349–356.CrossRefPubMedGoogle Scholar
- Rothe, C., Urlinger, S., Lohning, C., Prassler, J., Stark, Y., Jager, U., Hubner, B., Bardroff, M., Pradel, I., Boss, M., et al. (2007). The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of highaffinity antibodies. J Mol Biol 376, 1182–1200.CrossRefPubMedGoogle Scholar
- Rother, R.P., Rollins, S.A., Mojcik, C.F., Brodsky, R.A., and Bell, L. (2007). Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25, 1256–1264.CrossRefPubMedGoogle Scholar
- Rudick, R.A., and Sandrock, A. (2004). Natalizumab: alpha 4-integrin antagonist selective adhesion molecule inhibitors for MS. Expert Rev Neurother 4, 571–580.CrossRefPubMedGoogle Scholar
- Russell, N.D., Corvalan, J.R., Gallo, M.L., Davis, C.G., and Pirofski, L. (2000). Production of protective human antipneumococcal antibodies by transgenic mice with human immunoglobulin loci. Infect Immun 68, 1820–1826.CrossRefPubMedPubMedCentralGoogle Scholar
- Rutgeerts P, Schreiber S, Feagan B, Keininger D.L., O’Neil L., Fedorak R.N. (2007) Certolizumab pegol, a monthly subcutaneously administered Fc-free anti-TNFalpha, improves healthrelated quality of life in patients with moderate to severe Crohn’s disease. Int J Colorectal Dis 23, 289–296.CrossRefPubMedPubMedCentralGoogle Scholar
- Sandborn, W.J., Feagan, B.G., Stoinov, S., Honiball, P.J., Rutgeerts, P., Mason, D., Bloomfield, R., Schreiber, S., and the PRECISE 1 Study Investigators. (2007). Certolizumab pegol for the treatment of Crohn’s disease. N Engl J Med 357, 228–238.CrossRefPubMedGoogle Scholar
- Scheid, J.F., Mouquet, H., Feldhahn, N., Seaman, M.S., Velinzon, K., Pietzsch, J., Ott, R.G., Anthony, R.M., Zebroski, H., Hurley, A., et al. (2009). Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640.CrossRefPubMedGoogle Scholar
- Smith, E.S., and Zauderer, M. (2009) Antibody selection from immunoglobulin libraries expressed in mammalian cells. In therapeutic monoclonal antibodies: from bench to clinic, An, Z. (ed), pp 283–307. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
- Smith, K., Garman, L., Wrammert, J., Zheng, N.Y., Capra, J.D., Ahmed, R., and Wilson, P.C. (2009). Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc 4, 372–384.CrossRefPubMedPubMedCentralGoogle Scholar
- Sorokin, P. (2000). Mylotarg approved for patients with CD33 + acute myeloid leukemia. Clin J Oncol Nurs 4, 279–280.PubMedGoogle Scholar
- Stanfield, R.L., and Wilson, I.A. (2009). Antibody molecular structure. In therapeutic monoclonal antibodies: from bench to clinic, An, Z. (ed), pp 889. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
- Stangel, M., and Pul, R. (2006). Basic principles of intravenous immunoglobulin (IVIg) treatment. J Neurol 253, V18–24.CrossRefPubMedGoogle Scholar
- Storch, G.A. (1998). Humanized monoclonal antibody for prevention of respiratory syncytial virus infection. Pediatrics 102, 648–651.CrossRefPubMedGoogle Scholar
- Strohl, W.R. (2009). Therapeutic monoclonal antibodies: past, present, and future. In therapeutic monoclonal antibodies: from bench to clinic, An, Z. (ed), pp 889. Hoboken, NJ: John Wiley & Sons, Inc.Google Scholar
- Thistlethwaite, J.R. Jr, Haag, B.W., Gaber, A.O., Stuart, J.K., Aronson, A.J., Mayes, J.T., Lloyd, D.M., and Stuart, F.P. (1987). The use of OKT3 to treat steroid-resistant renal allograft rejection in patients receiving cyclosporine. Transplant Proc 19, 1901–1904.PubMedGoogle Scholar
- Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M.R., Murphy, B.R., Rappuoli, R., and Lanzavecchia, A. (2004). An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10, 871–875.CrossRefPubMedGoogle Scholar
- Van Bockstaele, F., Holz, J.B., and Revets, H. (2009). The development of nanobodies for therapeutic applications. Curr Opin Investig Drugs 10, 1212–1224.PubMedGoogle Scholar
- Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A. R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J., and Johnson, K.S. (1996). Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14, 309–314.CrossRefPubMedGoogle Scholar
- Vincenti, F., Kirkman, R., Light, S., Bumgardner, G., Pescovitz, M., Halloran, P., Neylan, J., Wilkinson, A., Ekberg, H., Gaston, R., et al. (1998). Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N Engl J Med 338, 161–165.CrossRefPubMedGoogle Scholar
- Walker, L.M., Phogat, S.K., Chan-Hui, P.Y., Wagner, D., Phung, P., Goss, J.L., Wrin, T., Simek, M.D., Fling, S., Mitcham, J.L., et al. (2009). Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289.CrossRefPubMedPubMedCentralGoogle Scholar
- Wang, Y., Washabaugh, M.W., and Zhao, Q.J. (2009). Characterization of heterogeneity in monoclonal antibody products. In characterization of heterogeneity in monoclonal antibody products, An, Z. (ed), pp 541–554. Hoboken, NJ: John Wiley and Sons.Google Scholar
- Weinblatt, M.E., Keystone, E.C., Furst, D.E., Moreland, L.W., Weisman, M.H., Birbara, C.A., Teoh, L.A., Fischkoff, S.A., and Chartash, E.K. (2003). Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48, 35–45.CrossRefPubMedGoogle Scholar
- Winau, F., Westphal, O., and Winau, R. (2004). Paul Ehrlich-in search of the magic bullet. Microbes Infect 6, 786–789.CrossRefPubMedGoogle Scholar
- Wrammert, J., Smith, K., Miller, J., Langley, W.A., Kokko, K., Larsen, C., Zheng, N.Y., Mays, I., Garman, L., Helms, C., et al. (2008). Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671.CrossRefPubMedPubMedCentralGoogle Scholar
- Wu, C., Ying, H., Grinnell, C., Bryant, S., Miller, R., Clabbers, A., Bose, S., McCarthy, D., Zhu, R.R., Santora, L., et al. (2007). Simultaneous targeting of multiple disease mediators by a dualvariable-domain immunoglobulin. Nat Biotechnol 25, 1290–1297.CrossRefPubMedGoogle Scholar
- Yu, Y.L., Lee, P., Ke, Y.H., Zhang, Y.K., Yu, Q., Lee, J., Li, M.Z., Song, J.L., Chen, J.G., Dai, J.H., et al. (2010). A humanized anti-VEGF rabbit monoclonal antibody inhibits angiogenesis and blocks tumor growth in xenograft models. PLoS One 5, e9072.CrossRefPubMedPubMedCentralGoogle Scholar
- Zhu, L., van de Lavoir, M.C., Albanese, J., Beenhouwer, D.O., Cardarelli, P.M., Cuison, S., Deng, D.F., Deshpande, S., Diamond, J. H., Green, L., et al. (2005). Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 23, 1159–1169.CrossRefPubMedGoogle Scholar