Protein & Cell

, Volume 1, Issue 4, pp 393–405 | Cite as

Interaction of the α2A domain of integrin with small collagen fragments

  • Hans-Christian Siebert
  • Monika Burg-Roderfeld
  • Thomas Eckert
  • Sabine Stötzel
  • Ulrike Kirch
  • Tammo Diercks
  • Martin J. Humphries
  • Martin Frank
  • Rainer Wechselberger
  • Emad Tajkhorshid
  • Steffen Oesser
Research Article

Abstract

We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of single and triple-helical strands of the collagen fragments was scrutinized with atom force microscopy (AFM) techniques. Strong interactions of the triple-stranded fragments comparable to those of collagen can only be detected for the 42mer triple-helical collagen-like peptide under study (which contains 42 amino acid residues per strand) by solid phase assays as well as by surface plasmon resonance (SPR) measurements. However, changes in NMR signals during titration and characteristic saturation transfer difference (STD) NMR signals are also detectable when α2A is added to a solution of the 21mer single-stranded collagen fragment. Molecular dynamics (MD) simulations employing different sets of force field parameters were applied to study the interaction between triple-helical or single-stranded collagen fragments with α2A. It is remarkable that even single-stranded collagen fragments can form various complexes with α2A showing significant differences in the complex stability with identical ligands. The results of MD simulations are in agreement with the signal alterations in our NMR experiments, which are indicative of the formation of weak complexes between single-stranded collagen and α2A in solution. These results provide useful information concerning possible interactions of α2A with small collagen fragments that are of relevance to the design of novel therapeutic A-domain inhibitors.

Keywords

integrin-collagen interaction NMR SPR AFM molecular modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13238_2010_38_MOESM1_ESM.pdf (603 kb)
Supplementary material, approximately 603 KB.

References

  1. Bello, A.E., and Oesser, S. (2006). Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr Med Res Opin 22, 2221–2232.CrossRefPubMedGoogle Scholar
  2. Berisio, R., Vitagliano, L., Mazzarella, L., and Zagari, A. (2002). Crystal structure of the collagen triple helix model [(Pro-Pro-Gly) (10)](3). Protein Sci 11, 262–270.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bhunia, A., Vivekanandan, S., Eckert, T., Burg-Roderfeld, M., Wechselberger, R., Romanuka, J., Bachle, D., Kornilov, A.V., von der Lieth, C.W., Jimenez-Barbero, J., et al. (2010). Why structurally different cyclic peptides can be glycomimetics of the HNK-1 carbohydrate antigen. J Am Chem Soc 132, 96–105.CrossRefPubMedGoogle Scholar
  4. Brooks, B.R., Brooks, C.L., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., et al. (2009). CHARMM: The biomolecular simulation program. J Comput Chem 30, 1545–1614.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Calderwood, D.A., Tuckwell, D.S., and Humphries, M.J. (1995). Specificity of integrin I-domain-ligand binding. Biochem Soc Trans 23, 504S.CrossRefPubMedGoogle Scholar
  6. Coe, A.P., Askari, J.A., Kline, A.D., Robinson, M.K., Kirby, H., Stephens, P.E., and Humphries, M.J. (2001). Generation of a minimal alpha5beta1 integrin-Fc fragment. J Biol Chem 276, 35854–35866.CrossRefPubMedGoogle Scholar
  7. Darden, T., Perera, L., Li, L., and Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7, R55–60.CrossRefPubMedGoogle Scholar
  8. Dickeson, S.K., Walsh, J.J., and Santoro, S.A. (1997). Contributions of the I and EF hand domains to the divalent cation-dependent collagen binding activity of the alpha2beta1 integrin. J Biol Chem 272, 7661–7668.CrossRefPubMedGoogle Scholar
  9. Diercks, T., Coles, M., and Kessler, H. (2001). Applications of NMR in drug discovery. Curr Opin Chem Biol 5, 285–291.CrossRefPubMedGoogle Scholar
  10. Elliott, J.T., Woodward, J.T., Langenbach, K.J., Tona, A., Jones, P.L., and Plant, A.L. (2005). Vascular smooth muscle cell response on thin films of collagen. Matrix Biol 24, 489–502.CrossRefPubMedGoogle Scholar
  11. Elliott, J.T., Woodward, J.T., Umarji, A., Mei, Y., and Tona, A. (2007). The effect of surface chemistry on the formation of thin films of native fibrillar collagen. Biomaterials 28, 576–585.CrossRefPubMedGoogle Scholar
  12. Emsley, J., Knight, C.G., Farndale, R.W., and Barnes, M.J. (2004). Structure of the integrin alpha2beta1-binding collagen peptide. J Mol Biol 335, 1019–1028.CrossRefPubMedGoogle Scholar
  13. Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J., and Liddington, R.C. (2000). Structural basis of collagen recognition by integrin alpha2beta1. Cell 101, 47–56.CrossRefPubMedGoogle Scholar
  14. Feller, S.E., Zhang, Y.H., Pastor, R.W., and Brooks, B.R. (1995). Constant-pressure molecular-dynamics simulation-the Langevin Piston Method. J Chem Phys 103, 4613–4621.CrossRefGoogle Scholar
  15. Grzesiak, J.J., and Bouvet, M. (2008). Activation of the alpha2beta1 integrin-mediated malignant phenotype on type I collagen in pancreatic cancer cells by shifts in the concentrations of extracellular Mg2+ and Ca2+. Int J Cancer 122, 2199–2209.CrossRefPubMedGoogle Scholar
  16. Grzesiak, J.J., and Pierschbacher, M.D. (1995). Shifts in the concentrations of magnesium and calcium in early porcine and rat wound fluids activate the cell migratory response. J Clin Invest 95, 227–233.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Herr, A.B., and Farndale, R.W. (2009). Structural insights into the interactions between platelet receptors and fibrillar collagen. J Biol Chem 284, 19781–19785.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Huizinga, E.G., Martijn van der Plas, R., Kroon, J., Sixma, J.J., and Gros, P. (1997). Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding. Structure 5, 1147–1156.CrossRefPubMedGoogle Scholar
  19. Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J Mol Graph 14, 33–38, 27–38.CrossRefPubMedGoogle Scholar
  20. Humphries, J.D., Askari, J.A., Zhang, X.P., Takada, Y., Humphries, M. J., and Mould, A.P. (2000). Molecular basis of ligand recognition by integrin alpha5beta 1. II. Specificity of arg-gly-Asp binding is determined by Trp157 OF THE alpha subunit. J Biol Chem 275, 20337–20345.CrossRefPubMedGoogle Scholar
  21. Humphries, M.J. (2002). Insights into integrin-ligand binding and activation from the first crystal structure. Arthritis Res 4Suppl 3, S69–78.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.CrossRefPubMedGoogle Scholar
  23. Ichikawa, O., Osawa, M., Nishida, N., Goshima, N., Nomura, N., and Shimada, I. (2007). Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J 26, 4168–4176.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Jorgensen, W.L., Chandrasekhar, J., Buckner, J.K., and Madura, J.D. (1986). Computer simulations of organic reactions in solution. Ann N Y Acad Sci 482, 198–209.CrossRefPubMedGoogle Scholar
  25. Kiedzierska, A., Smietana, K., Czepczynska, H., and Otlewski, J. (2007). Structural similarities and functional diversity of eukaryotic discoidin-like domains. Biochim Biophys Acta 1774, 1069–1078.CrossRefPubMedGoogle Scholar
  26. Kim, J.K., Xu, Y., Xu, X., Keene, D.R., Gurusiddappa, S., Liang, X., Wary, K.K., and Hook, M. (2005). A novel binding site in collagen type III for integrins alpha1beta1 and alpha2beta1. J Biol Chem 280, 32512–32520.CrossRefPubMedGoogle Scholar
  27. Knight, C.G., Morton, L.F., Onley, D.J., Peachey, A.R., Messent, A.J., Smethurst, P.A., Tuckwell, D.S., Farndale, R.W., and Barnes, M.J. (1998). Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. J Biol Chem 273, 33287–33294.CrossRefPubMedGoogle Scholar
  28. Leitinger, B., and Hohenester, E. (2007). Mammalian collagen receptors. Matrix Biol 26, 146–155.CrossRefPubMedGoogle Scholar
  29. Loeser, R.F. (2000). Chondrocyte integrin expression and function. Biorheology 37, 109–116.PubMedGoogle Scholar
  30. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102, 3586–3616.CrossRefPubMedGoogle Scholar
  31. Melacini, G., Bonvin, A.M.J.J., Goodman, M., Boelens, R., and Kaptein, R. (2000). Hydration dynamics of the collagen triple helix by NMR. J Mol Biol 300, 1041–1048.CrossRefPubMedGoogle Scholar
  32. Morton, L.F., Peachey, A.R., Knight, C.G., Farndale, R.W., and Barnes, M.J. (1997). The platelet reactivity of synthetic peptides based on the collagen III fragment alpha1(III)CB4. Evidence for an integrin alpha2beta1 recognition site involving residues 522–528 of the alpha1(III) collagen chain. J Biol Chem 272, 11044–11048.CrossRefPubMedGoogle Scholar
  33. Moskowitz, R.W. (2000). Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum 30, 87–99.CrossRefPubMedGoogle Scholar
  34. Nahshol, O., Bronner, V., Notcovich, A., Rubrecht, L., Laune, D., and Bravman, T. (2008). Parallel kinetic analysis and affinity determination of hundreds of monoclonal antibodies using the ProteOn XPR36. Anal Biochem 383, 52–60.CrossRefPubMedGoogle Scholar
  35. Nishida, N., Sumikawa, H., Sakakura, M., Shimba, N., Takahashi, H., Terasawa, H., Suzuki, E., and Shimada, I. (2003). Collagen-binding mode of vWF-A3 domain determined by a transferred cross-saturation experiment. Nat Struct Biol 10, 53–58.CrossRefPubMedGoogle Scholar
  36. Oesser, S., Adam, M., Babel, W., and Seifert, J. (1999). Oral administration of (14)C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). J Nutr 129, 1891–1895.PubMedGoogle Scholar
  37. Oesser, S., and Seifert, J. (2003). Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell Tissue Res 311, 393–399.PubMedGoogle Scholar
  38. Persikov, A.V., Ramshaw, J.A., and Brodsky, B. (2005). Prediction of collagen stability from amino acid sequence. J Biol Chem 280, 19343–19349.CrossRefPubMedGoogle Scholar
  39. Plant, A.L., Bhadriraju, K., Spurlin, T.A., and Elliott, J.T. (2009). Cell response to matrix mechanics: focus on collagen. Biochim Biophys Acta 1793, 893–902.CrossRefPubMedGoogle Scholar
  40. Romijn, R.A., Bouma, B., Wuyster, W., Gros, P., Kroon, J., Sixma, J.J., and Huizinga, E.G. (2001). Identification of the collagen-binding site of the von Willebrand factor A3-domain. J Biol Chem 276, 9985–9991.CrossRefPubMedGoogle Scholar
  41. Siebert, H.C., Adar, R., Arango, R., Burchert, M., Kaltner, H., Kayser, G., Tajkhorshid, E., VonderLieth, C.W., Kaptein, R., Sharon, N., et al. (1997). Involvement of laser photo-CIDNP(chemically induced dynamic nuclear polarization)-reactive amino acid side chains in ligand binding by galactoside-specific lectins in solution. Eur J Biochem 249, 27–38.CrossRefPubMedGoogle Scholar
  42. Siebert, H.C., Andre, S., Lu, S.Y., Frank, M., Kaltner, H., van Kuik, J. A., Korchagina, E.Y., Bovin, N., Tajkhorshid, E., Kaptein, R., et al. (2003). Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry 42, 14762–14773.CrossRefPubMedGoogle Scholar
  43. Siebert, H.C., Born, K., Andre, S., Frank, M., Kaltner, H., von der Lieth, C.W., Heck, A.J., Jimenez-Barbero, J., Kopitz, J., and Gabius, H.J. (2005). Carbohydrate chain of ganglioside GM1 as a ligand: identification of the binding strategies of three 15 mer peptides and their divergence from the binding modes of growthregulatory galectin-1 and cholera toxin. Chemistry 12, 388–402.CrossRefPubMedGoogle Scholar
  44. Siebert, H.C., Lu, S.Y., Frank, M., Kramer, J., Wechselberger, R., Joosten, J., Andre, S., Rittenhouse-Olson, K., Roy, R., von der Lieth, C.W., et al. (2002). Analysis of protein-carbohydrate interaction at the lower size limit of the protein part (15-mer peptide) by NMR spectroscopy, electrospray ionization mass spectrometry, and molecular modeling. Biochemistry 41, 9707–9717.CrossRefPubMedGoogle Scholar
  45. Siebert, H.C., Lu, S.Y., Wechselberger, R., Born, K., Eckert, T., Liang, S., von der Lieth, C.W., Jimenez-Barbero, J., Schauer, R., Vliegenthart, J.F., et al. (2009). A lectin from the Chinese bird-hunting spider binds sialic acids. Carbohydr Res 344, 1515–1525.CrossRefPubMedGoogle Scholar
  46. Siebert, H.C., Tajkhorshid, E., and Dabrowski, J. (2001). Barrier to rotation around the C-sp(2)-C-sp(2) bond of the ketoaldehyde enol ether MeC(O)CH = CH-OEt as determined by C-13 NMR and ab initio calculations. J Phys Chem A 105, 8488–8494.CrossRefGoogle Scholar
  47. Siljander, P.R., Hamaia, S., Peachey, A.R., Slatter, D.A., Smethurst, P.A., Ouwehand, W.H., Knight, C.G., and Farndale, R.W. (2004). Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens. J Biol Chem 279, 47763–47772.CrossRefPubMedGoogle Scholar
  48. Sweeney, S.M., Orgel, J.P., Fertala, A., McAuliffe, J.D., Turner, K.R., Di Lullo, G.A., Chen, S., Antipova, O., Perumal, S., Ala-Kokko, L., et al. (2008). Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283, 21187–21197.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Valdramidou, D., Humphries, M.J., and Mould, A.P. (2008). Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metalbinding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1. J Biol Chem 283, 32704–32714.PubMedCentralCrossRefPubMedGoogle Scholar
  50. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J. (2005). GROMACS: fast, flexible, and free. J Comput Chem 26, 1701–1718.CrossRefGoogle Scholar
  51. van Lenthe, J.H., den Boer, D.H.W., Havenith, R.W.A., Schauer, R., and Siebert, H.C. (2004). Ab initio calculations on various sialic acids provide valuable information about sialic acid-specific enzymes. J Mol Struct (Theochem) 677, 29–37.CrossRefGoogle Scholar
  52. Vogel, W.F., Abdulhussein, R., and Ford, C.E. (2006). Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 18, 1108–1116.CrossRefPubMedGoogle Scholar
  53. Wu, A.M., Singh, T., Liu, J.H., Krzeminski, M., Russwurm, R., Siebert, H.C., Bonvin, A.M., Andre, S., and Gabius, H.J. (2007). Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. Glycobiology 17, 165–184.CrossRefPubMedGoogle Scholar
  54. Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155.CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hans-Christian Siebert
    • 1
  • Monika Burg-Roderfeld
    • 1
  • Thomas Eckert
    • 1
  • Sabine Stötzel
    • 1
  • Ulrike Kirch
    • 1
  • Tammo Diercks
    • 2
    • 3
  • Martin J. Humphries
    • 4
  • Martin Frank
    • 5
  • Rainer Wechselberger
    • 3
  • Emad Tajkhorshid
    • 6
  • Steffen Oesser
    • 7
  1. 1.Institut für Biochemie und Endokrinologie, Veterinärmedizinische FakultätJustus-Liebig-Universität GießenGießenGermany
  2. 2.CiC bioGUNEDerioSpain
  3. 3.Utrecht Facility for High-resolution NMRBijvoetcenter for Biomolecular Research Utrecht UniversityUtrechtThe Netherlands
  4. 4.Wellcome Trust Centre for Cell-Matrix Research, School of Biological SciencesUniversity of ManchesterManchesterUK
  5. 5.Molecular Structure Analysis Core FacilityDeutsches KrebsforschungszentrumHeidelbergGermany
  6. 6.Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  7. 7.Collagen Research InstituteKielGermany

Personalised recommendations