Protein & Cell

, Volume 1, Issue 3, pp 275–283 | Cite as

SUMOylation of RIG-I positively regulates the type I interferon signaling

  • Zhiqiang Mi
  • Jihuan Fu
  • Yanbao Xiong
  • Hong TangEmail author
Research Article


Retinoic acid-inducible gene-I (RIG-I) functions as an intracellular pattern recognition receptor (PRR) that recognizes the 5’-triphosphate moiety of single-stranded RNA viruses to initiate the innate immune response. Previous studies have shown that Lys63-linked ubiquitylation is required for RIG-I activation and the downstream anti-viral type I interferon (IFN-I) induction. Herein we reported that, RIG-I was also modified by small ubiquitin-like modifier-1 (SUMO-1). Functional analysis showed that RIG-I SUMOylation enhanced IFN-I production through increased ubiquitylation and the interaction with its downstream adaptor molecule Cardif. Our results therefore suggested that SUMOylation might serve as an additional regulatory tier for RIG-I activation and IFN-I signaling.


RIG-I SUMOylation type I interferon innate immunity 

Supplementary material

13238_2010_30_MOESM1_ESM.pdf (371 kb)
Supplementary material, approximately 340 KB.


  1. Anckar, J., and Sistonen, L. (2007). SUMO: getting it on. Biochem Soc Trans 35, 1409–1413.CrossRefGoogle Scholar
  2. Arimoto, K., Konishi, H., and Shimotohno, K. (2008). UbcH8 regulates ubiquitin and ISG15 conjugation to RIG-I. Mol Immunol 45, 1078–1084.CrossRefGoogle Scholar
  3. Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T., and Shimotohno, K. (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104, 7500–7505.CrossRefGoogle Scholar
  4. Boggio, R., Colombo, R., Hay, R.T., Draetta, G.F., and Chiocca, S. (2004). A mechanism for inhibiting the SUMO pathway. Mol Cell 16, 549–561.CrossRefGoogle Scholar
  5. Comerford, K.M., Leonard, M.O., Karhausen, J., Carey, R., Colgan, S. P., and Taylor, C.T. (2003). Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A 100, 986–991.CrossRefGoogle Scholar
  6. Cui, X.F., Imaizumi, T., Yoshida, H., Borden, E.C., and Satoh, K. (2004). Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates the expression of interferon-gamma stimulated gene 15 in MCF-7 cells. Biochem Cell Biol 82, 401–405.CrossRefGoogle Scholar
  7. Desterro, J.M., Rodriguez, M.S., and Hay, R.T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2, 233–239.CrossRefGoogle Scholar
  8. Desterro, J.M., Thomson, J., and Hay, R.T. (1997). Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417, 297–300.CrossRefGoogle Scholar
  9. Doyle, S., Vaidya, S., O’Connell, R., Dadgostar, H., Dempsey, P., Wu, T., Rao, G., Sun, R., Haberland, M., Modlin, R., et al. (2002). IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263.CrossRefGoogle Scholar
  10. Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., et al. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920.CrossRefGoogle Scholar
  11. Geiss-Friedlander, R., and Melchior, F. (2007). Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8, 947–956.CrossRefGoogle Scholar
  12. Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R.A., Diamond, M.S., and Colonna, M. (2006). Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103, 8459–8464.CrossRefGoogle Scholar
  13. Guo, B., and Cheng, G. (2007). Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem 282, 11817–11826.CrossRefGoogle Scholar
  14. Guo, D., Li, M., Zhang, Y., Yang, P., Eckenrode, S., Hopkins, D., Zheng, W., Purohit, S., Podolsky, R.H., Muir, A., et al. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36, 837–841.CrossRefGoogle Scholar
  15. Han, K.J., Jiang, L., and Shu, H.B. (2008). Regulation of IRF2 transcriptional activity by its sumoylation. Biochem Biophys Res Commun 372, 772–778.CrossRefGoogle Scholar
  16. Hay, R.T. (2005). SUMO: a history of modification. Mol Cell 18, 1–12.CrossRefGoogle Scholar
  17. Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425–479.CrossRefGoogle Scholar
  18. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M., et al. (2006). 5’-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997.CrossRefGoogle Scholar
  19. Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H., and Miyamoto, S. (2003). Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115, 565–576.CrossRefGoogle Scholar
  20. Imaizumi, T., Hatakeyama, M., Yamashita, K., Yoshida, H., Ishikawa, A., Taima, K., Satoh, K., Mori, F., and Wakabayashi, K. (2004). Interferon-gamma induces retinoic acid-inducible gene-I in endothelial cells. Endothelium 11, 169–173.CrossRefGoogle Scholar
  21. Jounai, N., Takeshita, F., Kobiyama, K., Sawano, A., Miyawaki, A., Xin, K.Q., Ishii, K.J., Kawai, T., Akira, S., Suzuki, K., et al. (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104, 14050–14055.CrossRefGoogle Scholar
  22. Kang, D.C., Gopalkrishnan, R.V., Lin, L., Randolph, A., Valerie, K., Pestka, S., and Fisher, P.B. (2004). Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene. Oncogene 23, 1789–1800.CrossRefGoogle Scholar
  23. Kang, D.C., Gopalkrishnan, R.V., Wu, Q., Jankowsky, E., Pyle, A.M., and Fisher, P.B. (2002). mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A 99, 637–642.CrossRefGoogle Scholar
  24. Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O., et al. (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28.CrossRefGoogle Scholar
  25. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J., et al. (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105.CrossRefGoogle Scholar
  26. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., and Akira, S. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6, 981–988.CrossRefGoogle Scholar
  27. Kim, M.J., Hwang, S.Y., Imaizumi, T., and Yoo, J.Y. (2008). Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 82, 1474–1483.CrossRefGoogle Scholar
  28. Kubota, T., Matsuoka, M., Chang, T.H., Tailor, P., Sasaki, T., Tashiro, M., Kato, A., and Ozato, K. (2008). Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. J Biol Chem 283, 25660–25670.CrossRefGoogle Scholar
  29. Lenz, H.J., Danenberg, K., Schnieders, B., Goeker, E., Peters, G.J., Garrow, T., Shane, B., Bertino, J.R., and Danenberg, P.V. (1994). Quantitative analysis of folylpolyglutamate synthetase gene expression in tumor tissues by the polymerase chain reaction: marked variation of expression among leukemia patients. Oncol Res 6, 329–335.Google Scholar
  30. Lim, K.L., Chew, K.C., Tan, J.M., Wang, C., Chung, K.K., Zhang, Y., Tanaka, Y., Smith, W., Engelender, S., Ross, C.A., et al. (2005). Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 25, 2002–2009.CrossRefGoogle Scholar
  31. Lin, R., Yang, L., Nakhaei, P., Sun, Q., Sharif-Askari, E., Julkunen, I., and Hiscott, J. (2006). Negative regulation of the retinoic acidinducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281, 2095–2103.CrossRefGoogle Scholar
  32. Lin, X., Liang, M., Liang, Y.Y., Brunicardi, F.C., and Feng, X.H. (2003). SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem 278, 31043–31048.CrossRefGoogle Scholar
  33. Mattana, P., and Viscomi, G.C. (1998). Variations in the interferon-inducing capacity of Sendai virus subpopulations. J Interferon Cytokine Res 18, 399–405.CrossRefGoogle Scholar
  34. Melchior, F., Schergaut, M., and Pichler, A. (2003). SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 28, 612–618.CrossRefGoogle Scholar
  35. Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., and Tschopp, J. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172.CrossRefGoogle Scholar
  36. Meylan, E., Tschopp, J., and Karin, M. (2006). Intracellular pattern recognition receptors in the host response. Nature 442, 39–44.CrossRefGoogle Scholar
  37. Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., Sievers, C., Yang, L., Kopinja, J., Rooney, D.L., Zhang, M., Ihrig, M.M., McManus, M.T., et al. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33, 401–406.CrossRefGoogle Scholar
  38. Saito, T., Hirai, R., Loo, Y.M., Owen, D., Johnson, C.L., Sinha, S.C., Akira, S., Fujita, T., and Gale, M., Jr. (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104, 582–587.CrossRefGoogle Scholar
  39. Schwamborn, K., Knipscheer, P., van Dijk, E., van Dijk, W.J., Sixma, T.K., Meloen, R.H., and Langedijk, J.P. (2008). SUMO assay with peptide arrays on solid support: insights into SUMO target sites. J Biochem 144, 39–49.CrossRefGoogle Scholar
  40. Seth, R.B., Sun, L., Ea, C.K., and Chen, Z.J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682.CrossRefGoogle Scholar
  41. Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G., and Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101, 14373–14378.CrossRefGoogle Scholar
  42. Steffan, J.S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L.C., Slepko, N., Illes, K., Lukacsovich, T., Zhu, Y.Z., Cattaneo, E., et al. (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304, 100–104.CrossRefGoogle Scholar
  43. Sui, G., and Shi, Y. (2005). Gene silencing by a DNA vector-based RNAi technology. Methods Mol Biol 309, 205–218.Google Scholar
  44. Taniguchi, T., and Takaoka, A. (2001). A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2, 378–386.CrossRefGoogle Scholar
  45. Taniguchi, T., and Takaoka, A. (2002). The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14, 111–116.CrossRefGoogle Scholar
  46. Xu, J., He, Y., Qiang, B., Yuan, J., Peng, X., and Pan, X.M. (2008). A novel method for high accuracy sumoylation site prediction from protein sequences. BMC Bioinformatics 9, 8.CrossRefGoogle Scholar
  47. Xu, L.G., Wang, Y.Y., Han, K.J., Li, L.Y., Zhai, Z., and Shu, H.B. (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19, 727–740.CrossRefGoogle Scholar
  48. Yoneyama, M., and Fujita, T. (2008). Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29, 178–181.CrossRefGoogle Scholar
  49. Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M., Jr., Akira, S., et al. (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175, 2851–2858.CrossRefGoogle Scholar
  50. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5, 730–737.CrossRefGoogle Scholar
  51. Zhao, C., Denison, C., Huibregtse, J.M., Gygi, S., and Krug, R.M. (2005). Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A 102, 10200–10205.CrossRefGoogle Scholar
  52. Zheng, L., Baumann, U., and Reymond, J.L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32, e115.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhiqiang Mi
    • 1
    • 2
  • Jihuan Fu
    • 2
  • Yanbao Xiong
    • 2
  • Hong Tang
    • 2
    Email author
  1. 1.Center for Molecular Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Infection and Immunity of Chinese Academy of SciencesInstitute of BiophysicsBeijingChina

Personalised recommendations