Advertisement

Protein & Cell

, Volume 1, Issue 2, pp 133–142 | Cite as

Nitric oxide: promoter or suppressor of programmed cell death?

  • Yiqin Wang
  • Chen Chen
  • Gary J. Loake
  • Chengcai ChuEmail author
Review

Abstract

Nitric oxide (NO) is a short-lived gaseous free radical that predominantly functions as a messenger and effector molecule. It affects a variety of physiological processes, including programmed cell death (PCD) through cyclic guanosine monophosphate (cGMP)-dependent and — independent pathways. In this field, dominant discoveries are the diverse apoptosis networks in mammalian cells, which involve signals primarily via death receptors (extrinsic pathway) or the mitochondria (intrinsic pathway) that recruit caspases as effector molecules. In plants, PCD shares some similarities with animal cells, but NO is involved in PCD induction via interacting with pathways of phytohormones. NO has both promoting and suppressing effects on cell death, depending on a variety of factors, such as cell type, cellular redox status, and the flux and dose of local NO. In this article, we focus on how NO regulates the apoptotic signal cascade through protein S-nitrosylation and review the recent progress on mechanisms of PCD in both mammalian and plant cells.

Keywords

nitric oxide S-nitrosylation programmed cell death 

References

  1. Ameisen, J.C. (2002). On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9, 367–393.CrossRefGoogle Scholar
  2. Azad, N., Vallyathan, V., Wang, L., Tantishaiyakul, V., Stehlik, C., Leonard, S.S., and Rojanasakul, Y. (2006). S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J Biol Chem 281, 34124–34134.CrossRefGoogle Scholar
  3. Belenghi, B., Romero-Puertas, M.C., Vercammen, D., Brackenier, A., Inze, D., Delledonne, M., and Van Breusegem, F. (2007). Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282, 1352–1358.CrossRefGoogle Scholar
  4. Beligni, M.V., Fath, A., Bethke, P.C., Lamattina, L., and Jones, R.L. (2002). Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129, 1642–1650.CrossRefGoogle Scholar
  5. Bustamante, J., Bersier, G., Romero, M., Badin, R.A., and Boveris, A. (2000). Nitric oxide production and mitochondrial dysfunction during rat thymocyte apoptosis. Arch Biochem Biophys 376, 239–247.CrossRefGoogle Scholar
  6. Carreras, M.C., and Poderoso, J.J. (2007). Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol 292, C1569–1580.CrossRefGoogle Scholar
  7. Chanvorachote, P., Nimmannit, U., Lu, Y., Talbott, S., Jiang, B.H., and Rojanasakul, Y. (2009). Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1. J Biol Chem. In Press.Google Scholar
  8. Chanvorachote, P., Nimmannit, U., Wang, L., Stehlik, C., Lu, B., Azad, N., and Rojanasakul, Y. (2005). Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitinp-roteasome-mediated degradation of FLICE inhibitory protein. J Biol Chem 280, 42044–42050.CrossRefGoogle Scholar
  9. Cho, D.H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., and Lipton, S.A. (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102–105.CrossRefGoogle Scholar
  10. Choi, Y.B., and Lipton, S.A. (2000). Redox modulation of the NMDA receptor. Cell Mol Life Sci 57, 1535–1541.CrossRefGoogle Scholar
  11. Choi, Y.B., Tenneti, L., Le, D.A., Ortiz, J., Bai, G., Chen, H.S., and Lipton, S.A. (2000). Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3, 15–21.CrossRefGoogle Scholar
  12. Choy, J.C., and Pober, J.S. (2009). Generation of NO by bystander human CD8 T cells augments allogeneic responses by inhibiting cytokine deprivation-induced cell death. Am J Transplant. In press.Google Scholar
  13. Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T., and Neill, S.J. (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24, 667–677.CrossRefGoogle Scholar
  14. Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205–219.CrossRefGoogle Scholar
  15. Dat, J.F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., Kangasjarvi, J., Inze, D., and Van Breusegem, F. (2003). Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33, 621–632.CrossRefGoogle Scholar
  16. De Michele, R., Vurro, E., Rigo, C., Costa, A., Elviri, L., Di Valentin, M., Careri, M., Zottini, M., Sanita di Toppi, L., and Lo Schiavo, F. (2009). Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150, 217–228.CrossRefGoogle Scholar
  17. Delledonne, M. (2005). NO news is good news for plants. Curr Opin Plant Biol 8, 390–396.CrossRefGoogle Scholar
  18. Delledonne, M., Xia, Y., Dixon, R.A., and Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585–588.CrossRefGoogle Scholar
  19. Delledonne, M., Zeier, J., Marocco, A., and Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98, 13454–13459.CrossRefGoogle Scholar
  20. Di Stasi, A.M., Mallozzi, C., Macchia, G., Maura, G., Petrucci, T.C., and Minetti, M. (2002). Peroxynitrite affects exocytosis and SNARE complex formation and induces tyrosine nitration of synaptic proteins. J Neurochem 82, 420–429.CrossRefGoogle Scholar
  21. Dragovich, T., Rudin, C.M., and Thompson, C.B. (1998). Signal transduction pathways that regulate cell survival and cell death. Oncogene 17, 3207–3213.CrossRefGoogle Scholar
  22. Elbaz, M., Avni, A., and Weil, M. (2002). Constitutive caspase-like machinery executes programmed cell death in plant cells. Cell Death Differ 9, 726–733.CrossRefGoogle Scholar
  23. Fang, J., Nakamura, T., Cho, D.H., Gu, Z., and Lipton, S.A. (2007). S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 104, 18742–18747.CrossRefGoogle Scholar
  24. Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A., and Loake, G.J. (2005). A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102, 8054–8059.CrossRefGoogle Scholar
  25. Foster, M.W., Hess, D.T., and Stamler, J.S. (2009). Protein Snitrosylation in health and disease: a current perspective. Trends Mol Med 15, 391–404.CrossRefGoogle Scholar
  26. Franco, M.C., Arciuch, V.G., Peralta, J.G., Galli, S., Levisman, D., Lopez, L.M., Romorini, L., Poderoso, J.J., and Carreras, M.C. (2006). Hypothyroid phenotype is contributed by mitochondrial complex I inactivation due to translocated neuronal nitric-oxide synthase. J Biol Chem 281, 4779–4786.CrossRefGoogle Scholar
  27. Galbiati, F., Volonte, D., Liu, J., Capozza, F., Frank, P.G., Zhu, L., Pestell, R.G., and Lisanti, M.P. (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell 12, 2229–2244.CrossRefGoogle Scholar
  28. Ghafourifar, P., and Richter, C. (1997). Nitric oxide synthase activity in mitochondria. FEBS Lett 418, 291–296.CrossRefGoogle Scholar
  29. Gilroy, E.M., Hein, I., van der Hoorn, R., Boevink, P.C., Venter, E., McLellan, H., Kaffarnik, F., Hrubikova, K., Shaw, J., Holeva, M., et al. (2007). Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J 52, 1–13.CrossRefGoogle Scholar
  30. Giulivi, C., Poderoso, J.J., and Boveris, A. (1998). Production of nitric oxide by mitochondria. J Biol Chem 273, 11038–11043.CrossRefGoogle Scholar
  31. Gu, Z., Kaul, M., Yan, B., Kridel, S.J., Cui, J., Strongin, A., Smith, J.W., Liddington, R.C., and Lipton, S.A. (2002). S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186–1190.CrossRefGoogle Scholar
  32. Hara, M.R., Agrawal, N., Kim, S.F., Cascio, M.B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J.H., Tankou, S.K., Hester, L.D., et al. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7, 665–674.CrossRefGoogle Scholar
  33. Hengartner, M.O., and Bryant, J.A. (2000). Apoptotic cell death: from worms to wombats … but what about the weeds? Symp Soc Exp Biol 52, 1–12.Google Scholar
  34. Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H., Mattsson, O., Jorgensen, L.B., Jones, J.D., Mundy, J., and Petersen, M. (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773–783.CrossRefGoogle Scholar
  35. Holtgrefe, S., Gohlke, J., Starmann, J., Druce, S., Klocke, S., Altmann, B., Wojtera, J., Lindermayr, C., and Scheibe, R. (2008). Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. Physiol Plant 133, 211–228.CrossRefGoogle Scholar
  36. Huang, X., von Rad, U., and Durner, J. (2002). Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215, 914–923.CrossRefGoogle Scholar
  37. Ibiza, S., Perez-Rodriguez, A., Ortega, A., Martinez-Ruiz, A., Barreiro, O., Garcia-Dominguez, C.A., Victor, V.M., Esplugues, J.V., Rojas, J.M., Sanchez-Madrid, F., et al. (2008). Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells. Proc Natl Acad Sci U S A 105, 10507–10512.CrossRefGoogle Scholar
  38. Iyer, A.K., Azad, N., Wang, L., and Rojanasakul, Y. (2008). Role of S-nitrosylation in apoptosis resistance and carcinogenesis. Nitric Oxide 19, 146–151.CrossRefGoogle Scholar
  39. Jones, A.M. (2001). Programmed cell death in development and defense. Plant Physiol 125, 94–97.CrossRefGoogle Scholar
  40. Lamotte, O., Gould, K., Lecourieux, D., Sequeira-Legrand, A., Lebrun-Garcia, A., Durner, J., Pugin, A., and Wendehenne, D. (2004). Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135, 516–529.CrossRefGoogle Scholar
  41. Leitner, M., Vandelle, E., Gaupels, F., Bellin, D., and Delledonne, M. (2009). NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12, 451–458.CrossRefGoogle Scholar
  42. Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R., and Lamb, C. (1996). Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6, 427–437.CrossRefGoogle Scholar
  43. Lindermayr, C., Saalbach, G., Bahnweg, G., and Durner, J. (2006). Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281, 4285–4291.CrossRefGoogle Scholar
  44. Lopez, E., and Ferrer, I. (2000). Staurosporine- and H-7-induced cell death in SH-SY5Y neuroblastoma cells is associated with caspase-2 and caspase-3 activation, but not with activation of the FAS/FAS-L-caspase-8 signaling pathway. Brain Res Mol Brain Res 85, 61–67.CrossRefGoogle Scholar
  45. Magalhaes, C.R., Socodato, R.E., and Paes-de-Carvalho, R. (2006). Nitric oxide regulates the proliferation of chick embryo retina cells by a cyclic GMP-independent mechanism. Int J Dev Neurosci 24, 53–60.CrossRefGoogle Scholar
  46. Mannick, J.B. (2007). Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32, 523–526.CrossRefGoogle Scholar
  47. Marsden, P.A., Heng, H.H., Scherer, S.W., Stewart, R.J., Hall, A.V., Shi, X.M., Tsui, L.C., and Schappert, K.T. (1993). Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem 268, 17478–17488.Google Scholar
  48. McLellan, H., Gilroy, E.M., Yun, B.W., Birch, P.R., and Loake, G.J. (2009). Functional redundancy in the Arabidopsis Cathepsin B gene family contributes to basal defence, the hypersensitive response and senescence. New Phytol 183, 408–418.CrossRefGoogle Scholar
  49. Meier, P., Finch, A., and Evan, G. (2000). Apoptosis in development. Nature 407, 796–801.CrossRefGoogle Scholar
  50. Michel, T., and Feron, O. (1997). Nitric oxide synthases: which, where, how, and why? J Clin Invest 100, 2146–2152.CrossRefGoogle Scholar
  51. Moreau, M., Lee, G.I., Wang, Y., Crane, B.R., and Klessig, D.F. (2008). AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283, 32957–32967.CrossRefGoogle Scholar
  52. Mottram, J.C., Helms, M.J., Coombs, G.H., and Sajid, M. (2003). Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 19, 182–187.CrossRefGoogle Scholar
  53. Mur, L.A., Kenton, P., Lloyd, A.J., Ougham, H., and Prats, E. (2008). The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59, 501–520.CrossRefGoogle Scholar
  54. Nakamura, T., and Lipton, S.A. (2008). Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxid Redox Signal 10, 87–101.CrossRefGoogle Scholar
  55. Nakamura, T., and Lipton, S.A. (2009). Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14, 455–468.CrossRefGoogle Scholar
  56. Nicholson, D.W., and Thornberry, N.A. (1997). Caspases: killer proteases. Trends Biochem Sci 22, 299–306.CrossRefGoogle Scholar
  57. Nicholson, D.W., and Thornberry, N.A. (2003). Apoptosis. Life and death decisions. Science 299, 214–215.CrossRefGoogle Scholar
  58. Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., Kanna, M., Ioki, M., Kamada, H., and Saji, H. (2005). Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol 46, 1062–1072.CrossRefGoogle Scholar
  59. Park, H.S., Yu, J.W., Cho, J.H., Kim, M.S., Huh, S.H., Ryoo, K., and Choi, E.J. (2004). Inhibition of apoptosis signal-regulating kinase 1 by nitric oxide through a thiol redox mechanism. J Biol Chem 279, 7584–7590.CrossRefGoogle Scholar
  60. Pedroso, M.C., Magalhaes, J.R., and Durzan, D. (2000). A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J Exp Bot 51, 1027–1036.CrossRefGoogle Scholar
  61. Persichini, T., Mazzone, V., Polticelli, F., Moreno, S., Venturini, G., Clementi, E., and Colasanti, M. (2005). Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett 384, 254–259.CrossRefGoogle Scholar
  62. Peter, M.E., and Krammer, P.H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10, 26–35.CrossRefGoogle Scholar
  63. Rao, M.V., and Davis, K.R. (2001). The physiology of ozone induced cell death. Planta 213, 682–690.CrossRefGoogle Scholar
  64. Riobo, N.A., Melani, M., Sanjuan, N., Fiszman, M.L., Gravielle, M.C., Carreras, M.C., Cadenas, E., and Poderoso, J.J. (2002). The modulation of mitochondrial nitric-oxide synthase activity in rat brain development. J Biol Chem 277, 42447–42455.CrossRefGoogle Scholar
  65. Romero-Puertas, M.C., Campostrini, N., Matte, A., Righetti, P.G., Perazzolli, M., Zolla, L., Roepstorff, P., and Delledonne, M. (2008). Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8, 1459–1469.CrossRefGoogle Scholar
  66. Romero-Puertas, M.C., Laxa, M., Matte, A., Zaninotto, F., Finkemeier, I., Jones, A.M., Perazzolli, M., Vandelle, E., Dietz, K.J., and Delledonne, M. (2007). S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19, 4120–4130.CrossRefGoogle Scholar
  67. Saviani, E.E., Orsi, C.H., Oliveira, J.F., Pinto-Maglio, C.A., and Salgado, I. (2002). Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death. FEBS Lett 510, 136–140.CrossRefGoogle Scholar
  68. Sen, N., Hara, M.R., Ahmad, A.S., Cascio, M.B., Kamiya, A., Ehmsen, J.T., Aggrawal, N., Hester, L., Dore, S., Snyder, S.H., et al. (2009). GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63, 81–91.CrossRefGoogle Scholar
  69. Sen, N., Hara, M.R., Kornberg, M.D., Cascio, M.B., Bae, B.I., Shahani, N., Thomas, B., Dawson, T.M., Dawson, V.L., Snyder, S.H., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10, 866–873.CrossRefGoogle Scholar
  70. Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9, 459–470.CrossRefGoogle Scholar
  71. Simmons, M.L., and Murphy, S. (1992). Induction of nitric oxide synthase in glial cells. J Neurochem 59, 897–905.CrossRefGoogle Scholar
  72. Simons, B.H., Millenaar, F.F., Mulder, L., Van Loon, L.C., and Lambers, H. (1999). Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas syringae pv tomato. Plant Physiol 120, 529–538.CrossRefGoogle Scholar
  73. Tada, Y., Spoel, S.H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J., and Dong, X. (2008). Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321, 952–956.CrossRefGoogle Scholar
  74. Tamaoki, M. (2008). The role of phytohormone signaling in ozoneinduced cell death in plants. Plant Signal Behav 3, 166–174.CrossRefGoogle Scholar
  75. Thornberry, N.A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312–1316.CrossRefGoogle Scholar
  76. Tian, J., Kim, S.F., Hester, L., and Snyder, S.H. (2008). S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc Natl Acad Sci U S A 105, 10537–10540.CrossRefGoogle Scholar
  77. Tsang, A.H., and Chung, K.K. (2009). Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792, 643–650.CrossRefGoogle Scholar
  78. Tsang, A.H., Lee, Y.I., Ko, H.S., Savitt, J.M., Pletnikova, O., Troncoso, J.C., Dawson, V.L., Dawson, T.M., and Chung, K.K. (2009). S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A 106, 4900–4905.CrossRefGoogle Scholar
  79. Uehara, T. (2007). Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders. Antioxid Redox Signal 9, 597–601.CrossRefGoogle Scholar
  80. Uehara, T., Nakamura, T., Yao, D., Shi, Z.Q., Gu, Z., Ma, Y., Masliah, E., Nomura, Y., and Lipton, S.A. (2006). S-nitrosylated proteindisulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517.CrossRefGoogle Scholar
  81. Vaux, D.L., and Korsmeyer, S.J. (1999). Cell death in development. Cell 96, 245–254.CrossRefGoogle Scholar
  82. Vercammen, D., van de Cotte, B., De Jaeger, G., Eeckhout, D., Casteels, P., Vandepoele, K., Vandenberghe, I., Van Beeumen, J., Inze, D., and Van Breusegem, F. (2004). Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279, 45329–45336.CrossRefGoogle Scholar
  83. Wang, G., Moniri, N.H., Ozawa, K., Stamler, J.S., and Daaka, Y. (2006). Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc Natl Acad Sci U S A 103, 1295–1300.CrossRefGoogle Scholar
  84. Wang, H., Li, J., Bostock, R.M., and Gilchrist, D.G. (1996). Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8, 375–391.CrossRefGoogle Scholar
  85. Wang, Y.Q., Feechan, A., Yun, B.W., Shafiei, R., Hofmann, A., Taylor, P., Xue, P., Yang, F.Q., Xie, Z.S., Pallas, J.A., et al. (2009). S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 284, 2131–2137.CrossRefGoogle Scholar
  86. Westermann, B. (2009). Nitric oxide links mitochondrial fission to Alzheimer’s disease. Sci Signal 2, pe29.CrossRefGoogle Scholar
  87. Whiteman, M., Chua, Y.L., Zhang, D., Duan, W., Liou, Y.C., and Armstrong, J.S. (2006). Nitric oxide protects against mitochondrial permeabilization induced by glutathione depletion: role of S-nitrosylation? Biochem Biophys Res Commun 339, 255–262.CrossRefGoogle Scholar
  88. Wilson, I.D., Neill, S.J., and Hancock, J.T. (2008). Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31, 622–631.CrossRefGoogle Scholar
  89. Yamasaki, H., Shimoji, H., Ohshiro, Y., and Sakihama, Y. (2001). Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide 5, 261–270.CrossRefGoogle Scholar
  90. Zhou, P., Qian, L., and Iadecola, C. (2005). Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death. J Cereb Blood Flow Metab 25, 348–357.CrossRefGoogle Scholar
  91. Zottini, M., Formentin, E., Scattolin, M., Carimi, F., Lo Schiavo, F., and Terzi, M. (2002). Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett 515, 75–78.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yiqin Wang
    • 1
  • Chen Chen
    • 1
    • 2
  • Gary J. Loake
    • 3
  • Chengcai Chu
    • 1
    Email author
  1. 1.National Key Laboratory of Plant Genomics and National Centre for Plant Gene Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
  2. 2.Beijing Forestry UniversityBeijingChina
  3. 3.Institute of Molecular Plant Sciences, School of Biological SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations