Advertisement

Protein & Cell

, Volume 1, Issue 1, pp 14–21 | Cite as

Twenty years hunting for sulfur in DNA

  • Shi ChenEmail author
  • Lianrong Wang
  • Zixin DengEmail author
Review

Abstract

Here we tell a 20-year long story. It began with an easily overlooked DNA degradation (Dnd) phenomenon during electrophoresis and eventually led to the discovery of an unprecedented DNA sulfur modification governed by five dnd genes. This unusual DNA modification, called phosphorothioation, is the first physiological modification identified on the DNA backbone, in which the nonbridging oxygen is replaced by sulfur in a sequence selective and stereo-specific manner. Homologous dnd gene clusters have been identified in diverse and distantly related bacteria and thus have drawn immediate attention of the entire microbial scientific community. Here, we summarize the progress in chemical, genetic, enzymatic, bioinformatical and analytical aspects of this novel postreplicative DNA modification. We also discuss perspectives on the physiological functions of the DNA phosphorothioate modification in bacteria and their implications.

Keywords

DNA sulfur modification DNA phosphorothioate modification DNA degradation 

References

  1. Boybek, A., Ray, T.D., Evans, M.C., and Dyson, P.J. (1998). Novel site-specific DNA modification in Streptomyces: analysis of preferred intragenic modification sites present in a 5.7 kb amplified DNA sequence. Nucleic Acids Res 26, 3364–3371.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Brody, R.S., and Frey, P.A. (1981). Unambiguous determination of the stereochemistry of nucleotidyl transfer catalyzed by DNA polymerase I from Escherichia coli. Biochemistry 20, 1245–1252.PubMedCrossRefGoogle Scholar
  3. Burgers, P.M., and Eckstein, F. (1979). Diastereomers of 5′-Oadenosyl 3′-O-uridyl phosphorothioate: chemical synthesis and enzymatic properties. Biochemistry 18, 592–596.PubMedCrossRefGoogle Scholar
  4. Connelly, J.C., Kirkham, L.A., and Leach, D.R. (1998). The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proc Natl Acad Sci U S A 95, 7969–7974.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Dyson, P., and Evans, M. (1998). Novel post-replicative DNA modification in Streptomyces: analysis of the preferred modification site of plasmid pIJ101. Nucleic Acids Res 26, 1248–1253.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Eckstein, F. (1985). Nucleoside phosphorothioates. Annu Rev Biochem 54, 367–402.PubMedCrossRefGoogle Scholar
  7. Eckstein, F. (1986). Interaction of DNA containing phosphorothioate groups with restriction enzymes. Ann N Y Acad Sci 471, 217–225.PubMedCrossRefGoogle Scholar
  8. Evans, M., Kaczmarek, F.S., Stutzman-Engwall, K., and Dyson, P. (1994). Characterization of a Streptomyces-lividans-type sitespecific DNA modification system in the avermectin-producer Streptomyces avermitilis permits investigation of two novel giant linear plasmids, pSA1 and pSA2. Microbiology 140, 1367–1371.PubMedCrossRefGoogle Scholar
  9. Gish, G., and Eckstein, F. (1988). DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240, 1520–1522.PubMedCrossRefGoogle Scholar
  10. Gupta, A.P., Benkovic, P.A., and Benkovic, S.J. (1984). The effect of the 3′,5′ thiophosphoryl linkage on the exonuclease activities of T4 polymerase and the Klenow fragment. Nucleic Acids Res 12, 5897–5911.PubMedPubMedCentralCrossRefGoogle Scholar
  11. He, X., Ou, H.Y., Yu, Q., Zhou, X., Wu, J., Liang, J., Zhang, W., Rajakumar, K., and Deng, Z. (2007). Analysis of a genomic island housing genes for DNA S-modification system in Streptomyces lividans 66 and its counterparts in other distantly related bacteria. Mol Microbiol 65, 1034–1048.PubMedCrossRefGoogle Scholar
  12. Kambampati, R., and Lauhon, C.T. (2000). Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J Biol Chem 275, 10727–10730.PubMedCrossRefGoogle Scholar
  13. Kurreck, J. (2003). Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270, 1628–1644.PubMedCrossRefGoogle Scholar
  14. Labeit, S., Lehrach, H., and Goody, R.S. (1987). DNA sequencing using alpha-thiodeoxynucleotides. Methods Enzymol 155, 166–177.PubMedCrossRefGoogle Scholar
  15. Lauhon, C.T., and Kambampati, R. (2000). The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J Biol Chem 275, 20096–20103.PubMedCrossRefGoogle Scholar
  16. Liang, J., Wang, Z., He, X., Li, J., Zhou, X., and Deng, Z. (2007). DNA modification by sulfur: analysis of the sequence recognition specificity surrounding the modification sites. Nucleic Acids Res 35, 2944–2954.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Matsukura, M., Shinozuka, K., Zon, G., Mitsuya, H., Reitz, M., Cohen, J.S., and Broder, S. (1987). Phosphorothioate analogs of oligodeoxynucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc Natl Acad Sci U S A 84, 7706–7710.PubMedPubMedCentralCrossRefGoogle Scholar
  18. McClelland, M., Nelson, M., and Raschke, E. (1994). Effect of sitespecific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22, 3640–3659.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Mueller, E.G., Buck, C.J., Palenchar, P.M., Barnhart, L.E., and Paulson, J.L. (1998). Identification of a gene involved in the generation of 4-thiouridine in tRNA. Nucleic Acids Res 26, 2606–2610.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Mueller, E.G., Palenchar, P.M., and Buck, C.J. (2001). The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA. J Biol Chem 276, 33588–33595.PubMedCrossRefGoogle Scholar
  21. Nakamura, Y., Kaneko, T., Sato, S., Ikeuchi, M., Katoh, H., Sasamoto, S., Watanabe, A., Iriguchi, M., Kawashima, K., Kimura, T., et al. (2002). Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongates BP-1. DNA Res 9, 123–130.PubMedCrossRefGoogle Scholar
  22. Olsen, D.B., and Eckstein, F. (1990). High-efficiency oligonucleotidedirected plasmid mutagenesis. Proc Natl Acad Sci U S A 87, 1451–1455.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Olsen, D.B., Kotzorek, G., and Eckstein, F. (1990). Investigation of the inhibitory role of phosphorothioate internucleotidic linkages on the catalytic activity of the restriction endonuclease EcoRV. Biochemistry 29, 9546–9551.PubMedCrossRefGoogle Scholar
  24. Potter, B.V., Romaniuk, P.J., and Eckstein, F. (1983). Stereochemical course of DNA hydrolysis by nuclease S1. J Biol Chem 258, 1758–1760.PubMedGoogle Scholar
  25. Ray, T., Mills, A., and Dyson, P. (1995). Tris-dependent oxidative DNA strand scission during electrophoresis. Electrophoresis 16, 888–894.PubMedCrossRefGoogle Scholar
  26. Ray, T., Weaden, J., and Dyson, P. (1992). Tris-dependent sitespecific cleavage of Streptomyces lividans DNA. FEMS Microbiol Lett 75, 247–252.PubMedCrossRefGoogle Scholar
  27. Stein, C.A. (1996). Exploiting the potential of antisense: beyond phosphorothioate oligodeoxynucleotides. Chem Biol 3, 319–323.PubMedCrossRefGoogle Scholar
  28. Verma, S., and Eckstein, F. (1998). Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem 67, 99–134.PubMedCrossRefGoogle Scholar
  29. Wang, L., Chen, S., Xu, T., Taghizadeh, K., Wishnok, J.S., Zhou, X., You, D., Deng, Z., and Dedon, P.C. (2007). Phosphorothioation of DNA in bacteria by dnd genes. Nat Chem Biol 3, 709–710.PubMedCrossRefGoogle Scholar
  30. Xu, T., Liang, J., Chen, S., Wang, L., He, X., You, D., Wang, Z., Li, A., Xu, Z., Zhou, X., et al. (2009). DNA phosphorothioation in Streptomyces lividans: mutational analysis of the dnd locus. BMC Microbiol 9, 41.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Yao, F., Xu, T., Zhou, X., Deng, Z., and You, D. (2009). Functional analysis of spfD gene involved in DNA phosphorothioation in Pseudomonas fluorescens Pf0-1. FEBS Lett 583, 729–733.PubMedCrossRefGoogle Scholar
  32. You, D., Wang, L., Yao, F., Zhou, X., and Deng, Z. (2007). A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces lividans. Biochemistry 46, 6126–6133.PubMedCrossRefGoogle Scholar
  33. Zhang, Y., Yakrus, M.A., Graviss, E.A., Williams-Bouyer, N., Turenne, C., Kabani, A., and Wallace, R.J., Jr. (2004). Pulsed-field gel electrophoresis study of Mycobacterium abscessus isolates previously affected by DNA degradation. J Clin Microbiol 42, 5582–5587.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Zhou, X., Deng, Z., Firmin, J.L., Hopwood, D.A., and Kieser, T. (1988). Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res 16, 4341–4352.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Zhou, X., Deng, Z., Hopwood, D.A., and Kieser, T. (1994a). Characterization of phi HAU3, a broad-host-range temperate streptomyces phage, and development of phasmids. J Bacteriol 176, 2096–2099.PubMedPubMedCentralGoogle Scholar
  36. Zhou, X., Deng, Z., Hopwood, D.A., and Kieser, T. (1994b). Streptomyces lividans 66 contains a gene for phage resistance which is similar to the phage lambda ea59 endonuclease gene. Mol Microbiol 12, 789–797.PubMedCrossRefGoogle Scholar
  37. Zhou, X., He, X., Li, A., Lei, F., Kieser, T., and Deng, Z. (2004). Streptomyces coelicolor A3(2) lacks a genomic island present in the chromosome of Streptomyces lividans 66. Appl Environ Microbiol 70, 7110–7118.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Zhou, X., He, X., Liang, J., Li, A., Xu, T., Kieser, T., Helmann, J.D., and Deng, Z. (2005). A novel DNA modification by sulphur. Mol Microbiol 57, 1428–1438.PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratory of Microbial Metabolism, and School of Life Sciences & BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations