Protein & Cell

, Volume 1, Issue 1, pp 48–58 | Cite as

Cryo-electron microscopy reconstructions of two types of wild rabbit hemorrhagic disease viruses characterized the structural features of Lagovirus

Research Article

Abstract

Rabbit hemorrhagic disease was described in China in 1984 and can cause hemorrhagic necrosis of the liver within two or three days after infection. The etiological agent, rabbit hemorrhagic disease virus (RHDV), belongs to the Lagovirus genus in the Caliciviridae family. Compared to other calicivirus, such as rNV and SMSV, the structure of Lagovirus members is not well characterized. In this report, structures of two types of wild RHDV particles, the intact virion and the core-like particle (CLP), were reconstructed by cryo-electron microscopy at 11 &0A and 17 &0A, respectively. This is the first time the 3D structure of wild caliciviruses CLP has been provided, and the 3D structure of intact RHDV virion is the highest resolution structure in Lagovirus. Comparison of the intact virion and CLP structures clearly indicated that CLP was produced from the intact virion with the protrusion dissociated. In contrast with the crystal structures of recombinant Norovirus and San Miguel sea lion virus, the capsomers of RHDV virion exhibited unique structural features and assembly modes. Both P1 and P2 subdomains have interactions inside the AB capsomer, while only P2 subdomains have interaction inside CC capsomer. The pseudo atomic models of RHDV capsomers were constructed by homology modeling and density map fitting, and the rotation of RHDV VP60 P domain with respect to its S domain, compared with SMSV, was observed. Collectively, our cryo-electron microscopic studies of RHDV provide close insight into the structure of Lagovirus, which is important for functional analysis and better vaccine development in the future.

Keywords

rabbit hemorrhagic disease virus calicivirus Lagovirus core-like particle cryo-electron microscopy reconstruction 

References

  1. Alexandrov, M., Peshev, R., Bozhkov, S., Yanchev, I., and Doumanova, L. (1993). Electron- and immunoelectron-microscopic investigation on the rabbit haemorrhagic disease virus. Comp Immunol Microbiol Infect Dis 16, 21–27.PubMedCrossRefGoogle Scholar
  2. Antonio, L., and Lorenzo, C. (2008). How Many Caliciviruses are there in Rabbits? A Review on RHDV and Correlated Viruses. Lagomorph Biology 4, 263–278.Google Scholar
  3. Barbieri I., Lavazza A., Brocchi E., Konig M., and Capucci, L. (1997). Morphological, structural and antigenic modifications of rabbit haemorrhagic disease virus in the course of the disease. In: Chasey D., Gaskell R.M., Clarke I.N. (eds) Proceedings of the 1st symposium on calicivirus of the European Society of Veterinary Virology (ESVV), Reading, UK, 182–193.Google Scholar
  4. Barcena, J., Verdaguer, N., Roca, R., Morales, M., Angulo, I., Risco, C., Carrascosa, J.L., Torres, J.M., and Caston, J.R. (2004). The coat protein of Rabbit hemorrhagic disease virus contains a molecular switch at the N-terminal region facing the inner surface of the capsid. Virology 322, 118–134.PubMedCrossRefGoogle Scholar
  5. Bertolotti-Ciarlet, A., White, L.J., Chen, R., Prasad, B.V., and Estes, M.K. (2002). Structural requirements for the assembly of Norwalk virus-like particles. J Virol 76, 4044–4055.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bhella, D., Gatherer, D., Chaudhry, Y., Pink, R., and Goodfellow, I.G. (2008). Structural insights into calicivirus attachment and uncoating. J Virol 82, 8051–8058.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen, R., Neill, J.D., Estes, M.K., and Prasad, B.V. (2006). X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci U S A 103, 8048–8053.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen, R., Neill, J.D., Noel, J.S., Hutson, A.M., Glass, R.I., Estes, M. K., and Prasad, B.V. (2004). Inter- and intragenus structural variations in caliciviruses and their functional implications. J Virol 78, 6469–6479.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Clarke, I.N., and Lambden, P.R. (1997). The molecular biology of caliciviruses. J Gen Virol 78, 291–301.PubMedCrossRefGoogle Scholar
  10. Crowther, R.A., Henderson, R., and Smith, J.M. (1996). MRC image processing programs. J Struct Biol 116, 9–16.PubMedCrossRefGoogle Scholar
  11. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., and Sali, A. (2006). Comparative protein structure modeling using Modeller. Current protocols in bioinformatics/editorial board, Andreas, D.B. et al. Chapter 5, Unit 56.Google Scholar
  12. Fernandez, J.J., Luque, D., Caston, J.R., and Carrascosa, J.L. (2008). Sharpening high resolution information in single particle electron cryomicroscopy. J Struct Biol 164, 170–175.PubMedCrossRefGoogle Scholar
  13. Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., and Leith, A. (1996). SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116, 190–199.PubMedCrossRefGoogle Scholar
  14. Granzow, H., Weiland, F., Strebelow, H.G., Liu, C.M., and Schirrmeier, H. (1996). Rabbit hemorrhagic disease virus (RHDV): ultrastructure and biochemical studies of typical and core-like particles present in liver homogenates. Virus Res 41, 163–172.PubMedCrossRefGoogle Scholar
  15. Hillman, B., Morris, T.J., Kellen, W.R., Hoffman, D., and Schlegel, D. E. (1982). An invertebrate calici-like virus. Evidence for partial virion disintegration in host excreta. J Gen Virol 60, 115–123.Google Scholar
  16. Katpally, U., Wobus, C.E., Dryden, K., Virgin, H.W., 4th, and Smith, T. J. (2008). Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles. J Virol 82, 2079–2088.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Lander, G.C., Stagg, S.M., Voss, N.R., Cheng, A., Fellmann, D., Pulokas, J., Yoshioka, C., Irving, C., Mulder, A., Lau, P.W., et al. (2009). Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol 166, 95–102.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.PubMedCrossRefGoogle Scholar
  19. Laurent, S., Vautherot, J.F., Madelaine, M.F., Le Gall, G., and Rasschaert, D. (1994). Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection. J Virol 68, 6794–6798.PubMedPubMedCentralGoogle Scholar
  20. Liu, S.J., Xue, H.P., Pu, B.Q., and Qian, N.H. (1984). A new viral disease in rabbits. Anim Husb Vet Med 16, 253–255.Google Scholar
  21. Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128, 82–97.PubMedCrossRefGoogle Scholar
  22. Martin Alonso, J.M., Casais, R., Boga, J.A., and Parra, F. (1996). Processing of rabbit hemorrhagic disease virus polyprotein. J Virol 70, 1261–1265.PubMedPubMedCentralGoogle Scholar
  23. Meyers, G., Wirblich, C., and Thiel, H.J. (1991a). Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles. Virology 184, 677–686.PubMedCrossRefGoogle Scholar
  24. Meyers, G., Wirblich, C., and Thiel, H.J. (1991b). Rabbit hemorrhagic disease virus-molecular cloning and nucleotide sequencing of a calicivirus genome. Virology 184, 664–676.PubMedCrossRefGoogle Scholar
  25. Mindell, J.A., and Grigorieff, N. (2003). Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142, 334–347.PubMedCrossRefGoogle Scholar
  26. Nowotny, N., Bascunana, C.R., Ballagi-Pordany, A., Gavier-Widen, D., Uhlen, M., and Belak, S. (1997). Phylogenetic analysis of rabbit haemorrhagic disease and European brown hare syndrome viruses by comparison of sequences from the capsid protein gene. Arch Virol 142, 657–673.PubMedCrossRefGoogle Scholar
  27. Ohlinger, V.F., and Thiel, H.J. (1991). Identification of the viral haemorrhagic disease virus of rabbits as a calicivirus. Rev Sci Tech 10, 311–323.PubMedGoogle Scholar
  28. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612.PubMedCrossRefGoogle Scholar
  29. Prasad, B.V., Hardy, M.E., Dokland, T., Bella, J., Rossmann, M.G., and Estes, M.K. (1999). X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287–290.PubMedCrossRefGoogle Scholar
  30. Prasad, B.V., Matson, D.O., and Smith, A.W. (1994). Threedimensional structure of calicivirus. J Mol Biol 240, 256–264.PubMedCrossRefGoogle Scholar
  31. Roseman, A.M. (2004). FindEM-a fast, efficient program for automatic selection of particles from electron micrographs. J Struct Biol 145, 91–99.PubMedCrossRefGoogle Scholar
  32. Rossmann, M.G., and Johnson, J.E. (1989). Icosahedral RNA virus structure. Annu Rev Biochem 58, 533–573.PubMedCrossRefGoogle Scholar
  33. Shaikh, T.R., Gao, H., Baxter, W.T., Asturias, F.J., Boisset, N., Leith, A., and Frank, J. (2008). SPIDER image processing for singleparticle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 3, 1941–1974.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Smith, J.M. (1999). Ximdisp-A visualization tool to aid structure determination from electron microscope images. J Struct Biol 125, 223–228.PubMedCrossRefGoogle Scholar
  35. Thouvenin, E., Laurent, S., Madelaine, M.F., Rasschaert, D., Vautherot, J.F., and Hewat, E.A. (1997). Bivalent binding of a neutralising antibody to a calicivirus involves the torsional flexibility of the antibody hinge. J Mol Biol 270, 238–246.PubMedCrossRefGoogle Scholar
  36. Valicek, L., Smid, B., Rodak, L., and Kudrna, J. (1990). Electron and immunoelectron microscopy of rabbit haemorrhagic disease virus (RHDV). Arch Virol 112, 271–275.PubMedCrossRefGoogle Scholar
  37. Venkataram Prasad, B.V., Hardy, M.E., and Estes, M.K. (2000). Structural studies of recombinant Norwalk capsids. J Infect Dis 181Suppl 2, S317–321.PubMedCrossRefGoogle Scholar
  38. Wirblich, C., Thiel, H.J., and Meyers, G. (1996). Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. J Virol 70, 7974–7983.PubMedPubMedCentralGoogle Scholar
  39. Xu, Z.J., and Chen, W.X. (1989). Viral haemorrhagic disease in rabbits: a review. Vet Res Commun 13, 205–212.PubMedCrossRefGoogle Scholar
  40. Zheng, D., Xue, T., and Xu, W. (2001). Three-dimensional structure of the wild-type RHDV. Chinese Science Bulletin 46, 1005–1009.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.National Laboratory of Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Biochemistry and Molecular Biology, College of Life SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations