Protein & Cell

, Volume 1, Issue 2, pp 143–152 | Cite as

Alpha-helical cationic antimicrobial peptides: relationships of structure and function



Antimicrobial peptides (AMPs), with their extraordinary properties, such as broad-spectrum activity, rapid action and difficult development of resistance, have become promising molecules as new antibiotics. Despite their various mechanisms of action, the interaction of AMPs with the bacterial cell membrane is the key step for their mode of action. Moreover, it is generally accepted that the membrane is the primary target of most AMPs, and the interaction between AMPs and eukaryotic cell membranes (causing toxicity to host cells) limits their clinical application. Therefore, researchers are engaged in reforming or de novo designing AMPs as a ‘singleedged sword’ that contains high antimicrobial activity yet low cytotoxicity against eukaryotic cells. To improve the antimicrobial activity of AMPs, the relationship between the structure and function of AMPs has been rigorously pursued. In this review, we focus on the current knowledge of α-helical cationic antimicrobial peptides, one of the most common types of AMPs in nature.


antimicrobial peptides mechanism of action peptide structure antimicrobial activity 


  1. Abraham, T., Lewis, R.N., Hodges, R.S., and McElhaney, R.N. (2005). Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes. Biochemistry 44, 11279–11285.CrossRefGoogle Scholar
  2. Ali, F.E., Cao, G., Poudyal, A., Vaara, T., Nation, R.L., Vaara, M., and Li, J. (2009). Pharmacokinetics of novel antimicrobial cationic peptides NAB 7061 and NAB 739 in rats following intravenous administration. J Antimicrob Chemother 64, 1067–1070.CrossRefGoogle Scholar
  3. Avrahami, D., Oren, Z., and Shai, Y. (2001). Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides. Biochemistry 40, 12591–12603.CrossRefGoogle Scholar
  4. Avrahami, D., and Shai, Y. (2002). Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry 41, 2254–2263.CrossRefGoogle Scholar
  5. Benincasa, M., Skerlavaj, B., Gennaro, R., Pellegrini, A., and Zanetti, M. (2003). In vitro and in vivo antimicrobial activity of two alphahelical cathelicidin peptides and of their synthetic analogs. Peptides 24, 1723–1731.CrossRefGoogle Scholar
  6. Bland, J.M., De Lucca, A.J., Jacks, T.J., and Vigo, C.B. (2001). All-D-cecropin B: Synthesis, conformation, lipopolysaccharide binding, and antibacterial activity. Mol Cell Biochem 218, 105–111.CrossRefGoogle Scholar
  7. Brogden, K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev 3, 238–250.Google Scholar
  8. Bryan, L.E. (1988). General Mechanisms of Resistance to Antibiotics. J Antimicrob Chemoth 22, 1–15.CrossRefGoogle Scholar
  9. Chen, Y., Guarnieri, M.T., Vasil, A.I., Vasil, M.L., Mant, C.T., and Hodges, R.S. (2007). Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 51, 1398–1406.CrossRefGoogle Scholar
  10. Chen, Y., Mant, C.T., Farmer, S.W., Hancock, R.E., Vasil, M.L., and Hodges, R.S. (2005). Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280, 12316–12329.CrossRefGoogle Scholar
  11. Chen, Y., Mant, C.T., and Hodges, R.S. (2002). Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix. J Pept Res 59, 18–33.CrossRefGoogle Scholar
  12. Chen, Y.X., Vasil, A.I., Rehaume, L., Mant, C.T., Burns, J.L., Vasil, M. L., Hancock, R.E.W., and Hodges, R.S. (2006). Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides. Chem Biol Drug Des 67, 162–173.CrossRefGoogle Scholar
  13. Dathe, M., Schumann, M., Wieprecht, T., Winkler, A., Beyermann, M., Krause, E., Matsuzaki, K., Murase, O., and Bienert, M. (1996). Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35, 12612–12622.CrossRefGoogle Scholar
  14. Dathe, M., and Wieprecht, T. (1999). Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Bba-Biomembranes 1462, 71–87.CrossRefGoogle Scholar
  15. Dathe, M., Wieprecht, T., Nikolenko, H., Handel, L., Maloy, W.L., MacDonald, D.L., Beyermann, M., and Bienert, M. (1997). Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. Febs Lett 403, 208–212.CrossRefGoogle Scholar
  16. De Lucca, A.J., Bland, J.M., Vigo, C.B., Jacks, T.J., Peter, J., and Walsh, T.J. (2000). D-Cecropin B: proteolytic resistance, lethality for pathogenic fungi and binding properties. Med Mycol 38, 301–308.CrossRefGoogle Scholar
  17. Ehrenstein, G., and Lecar, H. (1977). Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10, 1–34.CrossRefGoogle Scholar
  18. Eisenberg, D. (1984). Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53, 595–623.CrossRefGoogle Scholar
  19. Elmquist, A., and Langel, U. (2003). In vitro uptake and stability study of pVEC and its all-D analog. Biol Chem 384, 387–393.CrossRefGoogle Scholar
  20. Falla, T.J., Karunaratne, D.N., and Hancock, R.E.W. (1996). Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271, 19298–19303.CrossRefGoogle Scholar
  21. Fernandez-Vidal, M., Jayasinghe, S., Ladokhin, A.S., and White, S.H. (2007). Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol 370, 459–470.CrossRefGoogle Scholar
  22. Giuliani, A., Pirri, G., and Nicoletto, S.F. (2007). Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2, 1–33.Google Scholar
  23. Hallock, K.J., Lee, D.K., and Ramamoorthy, A. (2003). MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84, 3052–3060.CrossRefGoogle Scholar
  24. Hamamoto, K., Kida, Y., Zhang, Y., Shimizu, T., and Kuwano, K. (2002). Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol 46, 741–749.CrossRefGoogle Scholar
  25. Hancock, R.E. (1997). Peptide antibiotics. Lancet 349, 418–422.CrossRefGoogle Scholar
  26. Hancock, R.E., and Rozek, A. (2002). Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206, 143–149.CrossRefGoogle Scholar
  27. Hong, S.Y., Oh, J.E., and Lee, K.H. (1999). Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol 58, 1775–1780.CrossRefGoogle Scholar
  28. Jenssen, H., Hamill, P., and Hancock, R.E. (2006). Peptide antimicrobial agents. Clin Microbiol Rev 19, 491–511.CrossRefGoogle Scholar
  29. Jia, X., Patrzykat, A., Devlin, R.H., Ackerman, P.A., Iwama, G.K., and Hancock, R.E.W. (2000). Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections. Appl Environ Microb 66, 1928–1932.CrossRefGoogle Scholar
  30. Jiang, Z.Q., Vasil, A.I., Hale, J.D., Hancock, R.E.W., Vasil, M.L., and Hodges, R.S. (2008). Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 90, 369–383.CrossRefGoogle Scholar
  31. Joanne, P., Falord, M., Chesneau, O., Lacombe, C., Castano, S., Desbat, B., Auvynet, C., Nicolas, P., Msadek, T., and El Amri, C. (2009). Comparative study of two plasticins: specificity, interfacial behavior, and bactericidal activity. Biochemistry 48, 9372–9383.CrossRefGoogle Scholar
  32. Jung, H.J., Park, Y., Sung, W.S., Suh, B.K., Lee, J., Hahm, K.S., and Lee, D.G. (2007). Fungicidal effect of pleurocidin by membraneactive mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophys Acta 1768, 1400–1405.CrossRefGoogle Scholar
  33. Konno, K., Rangel, M., Oliveira, J.S., Dos Santos Cabrera, M.P., Fontana, R., Hirata, I.Y., Hide, I., Nakata, Y., Mori, K., Kawano, M., et al. (2007). Decoralin, a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides 28, 2320–2327.CrossRefGoogle Scholar
  34. Kovacs, J.M., Mant, C.T., and Hodges, R.S. (2006). Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or comformational effects. Biopolymers 84, 283–297.CrossRefGoogle Scholar
  35. Ladokhin, A.S., and White, S.H. (2001). ’Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta 1514, 253–260.CrossRefGoogle Scholar
  36. Lee, D.G., Kim, H.N., Park, Y.K., Kim, H.K., Choi, B.H., Choi, C.H., and Hahm, K.S. (2002). Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Bba-Proteins Proteom 1598, 185–194.CrossRefGoogle Scholar
  37. Leontiadou, H., Mark, A.E., and Marrink, S.J. (2006). Antimicrobial peptides in action. J Am Chem Soc 128, 12156–12161.CrossRefGoogle Scholar
  38. Lugtenberg, B., and Van Alphen, L. (1983). Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 737, 51–115.CrossRefGoogle Scholar
  39. Manna, M., and Mukhopadhyay, C. (2009). Cause and effect of melittin-induced pore formation: a computational approach. Langmuir 25, 12235–12242.CrossRefGoogle Scholar
  40. Mant, C.T., Chen, Y., and Hodges, R.S. (2003). Temperature profiling of polypeptides in reversed-phase liquid chromatography — I. Monitoring of dimerization and unfolding of amphipathic alphahelical peptides. J Chromatogr A 1009, 29–43.CrossRefGoogle Scholar
  41. Marr, A.K., Gooderham, W.J., and Hancock, R.E. (2006). Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6, 468–472.CrossRefGoogle Scholar
  42. Marshall, S.H., and Arenas, G. (2003). Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron J Biotechn 6, 271–284.Google Scholar
  43. Matsuzaki, K. (1999). Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462, 1–10.CrossRefGoogle Scholar
  44. Matsuzaki, K., Murase, O., Fujii, N., and Miyajima, K. (1995). Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34, 6521–6526.CrossRefGoogle Scholar
  45. Matsuzaki, K., Murase, O., Fujii, N., and Miyajima, K. (1996). An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35, 11361–11368.CrossRefGoogle Scholar
  46. Mavri, J., and Vogel, H.J. (1996). Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study. Proteins 24, 495–501.CrossRefGoogle Scholar
  47. Meng, H., and Kumar, K. (2007). Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J AmChem Soc 129, 15615–15622.CrossRefGoogle Scholar
  48. Mor, A., Nguyen, V.H., Delfour, A., Miglioresamour, D., and Nicolas, P. (1991). Isolation, Amino-Acid-Sequence, and Synthesis of Dermaseptin, a Novel Antimicrobial Peptide of Amphibian Skin. Biochemistry 30, 8824–8830.CrossRefGoogle Scholar
  49. Neu, H.C. (1992). The crisis in antibiotic resistance. Science 257, 1064–1073.CrossRefGoogle Scholar
  50. Oren, Z., and Shai, Y. (1996). A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 237, 303–310.CrossRefGoogle Scholar
  51. Oren, Z., and Shai, Y. (1997). Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: Structure-function study. Biochemistry 36, 1826–1835.CrossRefGoogle Scholar
  52. Oyston, P.C., Fox, M.A., Richards, S.J., and Clark, G.C. (2009). Novel peptide therapeutics for treatment of infections. J Med Microbiol 58, 977–987.CrossRefGoogle Scholar
  53. Papo, N., Oren, Z., Pag, U., Sahl, H.G., and Shai, Y. (2002). The consequence of sequence alteration of an amphipathic alphahelical antimicrobial peptide and its diastereomers. J Biol Chem 277, 33913–33921.CrossRefGoogle Scholar
  54. Park, Y., Park, S.C., Park, H.K., Shin, S.Y., Kim, Y., and Hahm, K.S. (2007). Structure-activity relationship of HP(2–20) analog peptide: Enhanced antimicrobial activity by N-terminal random coil region deletion. Biopolymers 88, 199–207.CrossRefGoogle Scholar
  55. Pathak, N., Salasauvert, R., Ruche, G., Janna, M.H., Mccarthy, D., and Harrison, R.G. (1995). Comparison of the Effects of Hydrophobicity, Amphiphilicity, and Alpha-Helicity on the Activities of Antimicrobial Peptides. Proteins 22, 182–186.CrossRefGoogle Scholar
  56. Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., and Shai, Y. (1992). Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12416–12423.CrossRefGoogle Scholar
  57. Powers, J.P., and Hancock, R.E. (2003). The relationship between peptide structure and antibacterial activity. Peptides 24, 1681–1691.CrossRefGoogle Scholar
  58. Resende, J.M., Moraes, C.M., Munhoz, V.H., Aisenbrey, C., Verly, R. M., Bertani, P., Cesar, A., Pilo-Veloso, D., and Bechinger, B. (2009). Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 106, 16639–16644.CrossRefGoogle Scholar
  59. Shai, Y. (1999). Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462, 55–70.CrossRefGoogle Scholar
  60. Shai, Y. (2002). Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 236–248.CrossRefGoogle Scholar
  61. Shai, Y., and Oren, Z. (1996). Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem 271, 7305–7308.CrossRefGoogle Scholar
  62. Shalev, D.E., Mor, A., and Kustanovich, I. (2002). Structural consequences of carboxyamidation of dermaseptin S3. Biochemistry 41, 7312–7317.CrossRefGoogle Scholar
  63. Tossi, A., Sandri, L., and Giangaspero, A. (2000). Amphipathic, alphahelical antimicrobial peptides. Biopolymers 55, 4–30.CrossRefGoogle Scholar
  64. Tytler, E.M., Anantharamaiah, G.M., Walker, D.E., Mishra, V.K., Palgunachari, M.N., and Segrest, J.P. (1995). Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry 34, 4393–4401.CrossRefGoogle Scholar
  65. Verdon, J., Falge, M., Maier, E., Bruhn, H., Steinert, M., Faber, C., Benz, R., and Hechard, Y. (2009). Detergent-like activity and alpha-helical structure of warnericin RK, an anti-legionella peptide. Biophysical J 97, 1933–1940.CrossRefGoogle Scholar
  66. Vunnam, S., Juvvadi, P., Rotondi, K.S., and Merrifield, R.B. (1998). Synthesis and study of normal, enantio, retro, and retroenantio isomers of cecropin A-melittin hybrids, their end group effects and selective enzyme inactivation. J Pept Res 51, 38–44.CrossRefGoogle Scholar
  67. Wade, D., Boman, A., Wahlin, B., Drain, C.M., Andreu, D., Boman, H. G., and Merrifield, R.B. (1990). All-D Amino Acid-Containing Channel-Forming Antibiotic Peptides. Proc Natl Acad Sci U S A 87, 4761–4765.CrossRefGoogle Scholar
  68. Wakabayashi, H., Matsumoto, H., Hashimoto, K., Teraguchi, S., Takase, M., and Hayasawa, H. (1999). N-acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Ch 43, 1267–1269.Google Scholar
  69. Wang, G., Li, X., and Wang, Z. (2009). APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37, D933–937.CrossRefGoogle Scholar
  70. Wieprecht, T., Dathe, M., Beyermann, M., Krause, E., Maloy, W.L., MacDonald, D.L., and Bienert, M. (1997). Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry 36, 6124–6132.CrossRefGoogle Scholar
  71. Wildman, K.A.H., Lee, D.K., and Ramamoorthy, A. (2003). Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42, 6545–6558.CrossRefGoogle Scholar
  72. Wu, M.H., Maier, E., Benz, R., and Hancock, R.E.W. (1999). Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 7235–7242.CrossRefGoogle Scholar
  73. Yeaman, M.R., and Yount, N.Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Rev 55, 27–55.CrossRefGoogle Scholar
  74. Zasloff, M. (1987). Magainins, a Class of Antimicrobial Peptides from Xenopus Skin — Isolation, Characterization of 2 Active Forms, and Partial Cdna Sequence of a Precursor. Proc Natl Acad Sci U S A 84, 5449–5453.CrossRefGoogle Scholar
  75. Zelezetsky, I., and Tossi, A. (2006). Alpha-helical antimicrobial peptides-using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta 1758, 1436–1449.CrossRefGoogle Scholar
  76. Zhang, L., Benz, R., and Hancock, R.E. (1999). Influence of proline residues on the antibacterial and synergistic activities of alphahelical peptides. Biochemistry 38, 8102–8111.CrossRefGoogle Scholar
  77. Zhang, L., Falla, T., Wu, M., Fidai, S., Burian, J., Kay, W., and Hancock, R.E. (1998). Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria. Biochem Biophys Res Commun 247, 674–680.CrossRefGoogle Scholar
  78. Zilberstein, D., Schuldiner, S., and Padan, E. (1979). Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry 18, 669–673.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory for Molecular Enzymology and Engineering of Ministry of EducationJilin UniversityChangchunChina

Personalised recommendations