The Nucleus

, Volume 61, Issue 3, pp 213–226 | Cite as

High mobility group proteins: the multifaceted regulators of chromatin dynamics

  • Rwitie Mallik
  • Anindya Kundu
  • Shubho ChaudhuriEmail author
Review Article


DNA super-coiling and architectural proteins are the key players that maintain the chromatin in its compact state. Genomic DNA needs to be packaged such that it takes minimum space and can simultaneously be accessed for various DNA dependent processes. Architectural proteins are instrumental in organizing the dynamic higher order chromatin structure by effectuating a concerted effort among themselves and other nuclear proteins across spatio-temporal scales. The regulation of these proteins and their interaction with DNA modify the cellular phenotype by the modulation of gene expression. This review focuses on the structure–function relationship of three broad families of High mobility groups (HMGs) of protein, namely HMGA, HMGN and HMG-Box which are major chromatin architectural components of the eukaryotes. These nuclear elements not only act as architectural proteins but also play a multifaceted role in chromatin dynamics by facilitating interaction with nucleosomes, nucleosome-remodeling machines, transcription factors and histones.


Chromatin remodeling Architectural protein Linker histone H1 HMG-box HMGA HMGN 



The authors sincerely apologize to all the authors whose work has not been acknowledged and referred in the review article. This work was supported by CSIR, Government of India; Grant Numbers [38(1245)/10/EMR-II] and [38(1365)/13/EMR-II] and core grant of Bose Institute, Kolkata, India. A.K. also acknowledges DBT/RA for fellowship.


  1. 1.
    Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell. 2000;103:667–78.PubMedGoogle Scholar
  2. 2.
    Agresti A, Bianchi ME. HMGB proteins and gene expression. Curr Opin Genet Dev. 2003;13:170–8.PubMedGoogle Scholar
  3. 3.
    An W, van Holde K, Zlatanova J. The non-histone chromatin protein HMG1 protects linker DNA on the side opposite to that protected by linker histones. J Biol Chem. 1998;273:26289–91.PubMedGoogle Scholar
  4. 4.
    Antosch M, Mortensen SA, Grasser KD. Plant proteins containing high mobility group box DNA-binding domains modulate different nuclear processes. Plant Physiol. 2012;159:875–83.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev. 2005;15:496–506.PubMedGoogle Scholar
  6. 6.
    Birger Y, West KL, Postnikov YV, Lim JH, Furusawa T, Wagner JP, Laufer CS, Kraemer KH, Bustin M. Chromosomal protein HMGN1 enhances the rate of DNA repair in chromatin. EMBO J. 2003;22:1665–75.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bouallaga I, Massicard S, Yaniv M, Thierry F. An enhanceosome containing the Jun B/Fra-2 heterodimer and the HMG-I (Y) architectural protein controls HPV18 transcription. EMBO Rep. 2000;1:422–7.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Brewster NK, Johnston GC, Singer RA. Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. J Biol Chem. 1998;273:21972–9.PubMedGoogle Scholar
  9. 9.
    Brown DT, Izard T, Misteli T. Mapping the interaction surface of linker histone H1 0 with the nucleosome of native chromatin in vivo. Nat Struct Mol Biol. 2006;13:250.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol. 1999;19:5237–46.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bustin M. Chromatin unfolding and activation by HMGN(*) chromosomal proteins. Trends Biochem Sci. 2001;26:431–7.PubMedGoogle Scholar
  12. 12.
    Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Perspect Biol. 2012;4:a007906.Google Scholar
  13. 13.
    Catez F, Yang H, Tracey KJ, Reeves R, Misteli T, Bustin M. Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol Cell Biol. 2004;24:4321–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Charbonnel C, Rymarenko O, Da Ines O, Benyahya F, White CI, Butter F, Amiard S. The linker histone GH1-HMGA1 is involved in telomere stability and DNA damage repair. Plant Physiol. 2018;177:01789.Google Scholar
  15. 15.
    Chen B, Young J, Leng F. DNA bending by the mammalian high-mobility group protein AT hook 2. Biochemistry. 2010;49:1590–5.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Cleynen I, Van de Ven WJ. The HMGA proteins: a myriad of functions. Int J Oncol. 2008;32:289–305.PubMedGoogle Scholar
  17. 17.
    Contreras A, Hale TK, Stenoien DL, Rosen JM, Mancini MA, Herrera RE. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol Cell Biol. 2003;23:8626–36.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cui T, Leng F. Specific recognition of AT-rich DNA sequences by the mammalian high mobility group protein AT-hook 2: a SELEX study. Biochemistry. 2007;46:13059–66.PubMedGoogle Scholar
  19. 19.
    Deng T, Postnikov Y, Zhang S, Garrett L, Becker L, Rácz I, Hölter SM, Wurst W, Fuchs H, Gailus-Durner VJ. Interplay between H1 and HMGN epigenetically regulates OLIG1&2 expression and oligodendrocyte differentiation. Nucleic Acids Res. 2017;45:3031–45.PubMedGoogle Scholar
  20. 20.
    Ellwood K, Huang W, Johnson R, Carey MJM. Multiple layers of cooperativity regulate enhanceosome-responsive RNA polymerase II transcription complex assembly. Mol Cell Biol. 1999;19:2613–23.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Formosa T. The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta (BBA) Gene Regul Mech. 2012;1819:247–55.Google Scholar
  22. 22.
    Frost JM, Kim MY, Park GT, Hsieh P-H, Nakamura M, Lin SJ, Yoo H, Choi J, Ikeda Y, Kinoshita T. FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis. Proc Natl Acad Sci USA. 2018;115:E4720–9.PubMedGoogle Scholar
  23. 23.
    Furusawa T, Cherukuri S. Developmental function of HMGN proteins. Biochim Biophys Acta (BBA) Gene Regul Mech. 2010;1799:69–73.Google Scholar
  24. 24.
    Grasser KD, Launholt D, Grasser M. High mobility group proteins of the plant HMGB family: dynamic chromatin modulators. Biochim Biophys Acta (BBA) Gene StructExpr. 2007;1769:346–57.Google Scholar
  25. 25.
    Grosschedl R, Giese K, Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994;10:94–100.PubMedGoogle Scholar
  26. 26.
    Hansen FT, Madsen CK, Nordland AM, Grasser M, Merkle T, Grasser KD. A novel family of plant DNA-binding proteins containing both HMG-box and AT-rich interaction domains. Biochemistry. 2008;47:13207–14.PubMedGoogle Scholar
  27. 27.
    Hayes JJ, Pruss D, Wolffe AP. Contacts of the globular domain of histone H5 and core histones with DNA in a “chromatosome”. Proc Natl Acad Sci. 1994;91:7817–21.PubMedGoogle Scholar
  28. 28.
    Hieb AR, Gansen A, Böhm V, Langowski J. The conformational state of the nucleosome entry–exit site modulates TATA box-specific TBP binding. Nucleic Acids Res. 2014;42:7561–76.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hill DA, Pedulla ML, Reeves R. Directional binding of HMG-I (Y) on four-way junction DNA and the molecular basis for competitive binding with HMG-1 and histone H1. Nucleic Acids Res. 1999;27:2135–44.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hill DA, Reeves R. Competition between HMG-I (Y), HMG-1 and histone H1 on four-way junction DNA. Nucleic Acids Res. 1997;25:3523–31.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Hsieh T-F, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci. 2011;108:1755–62.PubMedGoogle Scholar
  32. 32.
    Hu L, Yang X, Yuan D, Zeng F, Zhang X. GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J. 2011;9:1038–48.PubMedGoogle Scholar
  33. 33.
    Huang J-C, Zamble DB, Reardon JT, Lippard SJ, Sancar A. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci. 1994;91:10394–8.PubMedGoogle Scholar
  34. 34.
    Hughes EN, Engelsberg BN, Billings PC. Purification of nuclear proteins that bind to cisplatin-damaged DNA. Identity with high mobility group proteins 1 and 2. J Biol Chem. 1992;267:13520–7.PubMedGoogle Scholar
  35. 35.
    Ikeda Y, Kinoshita Y, Susaki D, Ikeda Y, Iwano M, Takayama S, Higashiyama T, Kakutani T, Kinoshita T. HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis. Dev Cell. 2011;21:589–96.PubMedGoogle Scholar
  36. 36.
    Jacobsen K, Laursen NB, Jensen EO, Marcker A, Poulsen C, Marcker KA. HMG I-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters. Plant Cell. 1990;2:85–94.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jang JY, Kwak KJ, Kang H. Expression of a high mobility group protein isolated from Cucumis sativus affects the germination of Arabidopsis thaliana under abiotic stress conditions. J Integr Plant Biol. 2008;50:593–600.PubMedGoogle Scholar
  38. 38.
    Ju B-G, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG. A topoisomerase IIß-mediated dsDNA break required for regulated transcription. Science. 2006;312:1798–802.PubMedGoogle Scholar
  39. 39.
    Kato H, van Ingen H, Zhou BR, Feng H, Bustin M, Kay LE, Bai Y. Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc Natl Acad Sci USA. 2011;108:12283–8.PubMedGoogle Scholar
  40. 40.
    Kim JM, To TK, Nishioka T, Seki MJP. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ. 2010;33:604–11.PubMedGoogle Scholar
  41. 41.
    King CY, Weiss MA. The SRY high-mobility-group box recognizes DNA by partial intercalation in the minor groove: a topological mechanism of sequence specificity. Proc Natl Acad Sci USA. 1993;90:11990–4.PubMedGoogle Scholar
  42. 42.
    Kishi Y, Fujii Y, Hirabayashi Y, Gotoh Y. HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat Neurosci. 2012;15:1127.PubMedGoogle Scholar
  43. 43.
    Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/β-catenin signaling in development and disease. Dev Dyn. 2010;239:56–68.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kotliński M, Knizewski Ł, Muszewska A, Rutowicz K, Lirski M, Schmidt A, Baroux C, Ginalski K, Jerzmanowski A. Phylogeny-based systematization of Arabidopsis proteins with histone H1 globular domain. Plant Physiol. 2017;174:00214.Google Scholar
  45. 45.
    Krohn NM, Stemmer C, Fojan P, Grimm R, Grasser KD (2003) Protein kinase CK2 phosphorylates the HMG domain protein SSRP1 inducing the recognition of UV-damaged DNA. J Biol Chem. 2003;278:12710–5.PubMedGoogle Scholar
  46. 46.
    Kugler JE, Deng T, Bustin M. The HMGN family of chromatin-binding proteins: dynamic modulators of epigenetic processes. Biochim Biophys Acta. 2012;1819:652–6.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kwak KJ, Kim JY, Kim YO, Kang H. Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress. Plant Cell Physiol. 2007;48:221–31.PubMedGoogle Scholar
  48. 48.
    Lans H, Marteijn JA, Vermeulen WJE. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin. 2012;5:4.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Launholt D, Merkle T, Houben A, Schulz A, Grasser KD. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. Plant Cell. 2006;18:2904–18.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Li O, Vasudevan D, Davey CA, Dröge P. High-level expression of DNA architectural factor HMGA2 and its association with nucleosomes in human embryonic stem cells. Genesis. 2006;44:523–9.PubMedGoogle Scholar
  51. 51.
    Lichota J, Grasser KD. Differential chromatin association and nucleosome binding of the maize HMGA, HMGB, and SSRP1 proteins. Biochemistry. 2001;40:7860–7.PubMedGoogle Scholar
  52. 52.
    Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD. The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. J Mol Biol. 2008;384:9–21.PubMedGoogle Scholar
  53. 53.
    Liu W-M, Guerra-Vladusic FK, Kurakata S, Lupu R, Kohwi-Shigematsu T. HMG-I (Y) recognizes base-unpairing regions of matrix attachment sequences and its increased expression is directly linked to metastatic breast cancer phenotype. Can Res. 1999;59:5695–703.Google Scholar
  54. 54.
    Lnenicek-Allen M, Read CM, Crane-Robinson C. The DNA bend angle and binding affinity of an HMG box increased by the presence of short terminal arms. Nucleic Acids Res. 1996;24:1047–51.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Lolas IB, Himanen K, Grønlund JT, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J. 2010;61:686–97.PubMedGoogle Scholar
  56. 56.
    Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol. 2008;43:393–418.PubMedGoogle Scholar
  57. 57.
    Malarkey CS, Churchill ME. The high mobility group box: the ultimate utility player of a cell. Trends Biochem Sci. 2012;37:553–62.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Malicet C, Rochman M, Postnikov Y, Bustin M. Distinct properties of human HMGN5 reveal a rapidly evolving but functionally conserved nucleosome binding protein. Mol Cell Biol. 2011;31:2742–55.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Malini E, Maurizio E, Bembich S, Sgarra R, Edomi P, Manfioletti G. HMGA Interactome: new insights from phage display technology. Biochemistry. 2011;50:3462–8.PubMedGoogle Scholar
  60. 60.
    McKinney K, Prives CJM. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol Cell Biol. 2002;22:6797–808.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Mekhail K, Moazed D. The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol. 2010;11:317.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Melvin VS, Roemer SC, Churchill ME, Edwards DP. The C-terminal extension (CTE) of the nuclear hormone receptor DNA binding domain determines interactions and functional response to the HMGB-1/-2 co-regulatory proteins. J Biol Chem. 2002;277:25115–24.PubMedGoogle Scholar
  63. 63.
    Misteli T, Gunjan A, Hock R, Bustin M, Brown DT. Dynamic binding of histone H1 to chromatin in living cells. Nature. 2000;408:877.PubMedGoogle Scholar
  64. 64.
    Mitsouras K, Wong B, Arayata C, Johnson RC, Carey M. The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mol Cell Biol. 2002;22:4390–401.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Müller S, Ronfani L, Bianchi M. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med. 2004;255:332–43.PubMedGoogle Scholar
  66. 66.
    Munshi N, Yie J, Merika M, Senger K, Lomvardas S, Agalioti T, Thanos D. The IFN-β enhancer: a paradigm for understanding activation and repression of inducible gene expression. In: Cold Spring Harbor symposia on quantitative biology, vol. 64. Cold Spring Harbor Laboratory Press; 1999, pp. 149–160.Google Scholar
  67. 67.
    Murphy KJ, Cutter AR, Fang H, Postnikov YV, Bustin M, Hayes JJ. HMGN1 and 2 remodel core and linker histone tail domains within chromatin. Nucl Acids Res. 2017;45:9917–30.PubMedGoogle Scholar
  68. 68.
    Nag R, Smerdon MJ. Altering the chromatin landscape for nucleotide excision repair. Res Rev Mutat Res. 2009;682:13–20.Google Scholar
  69. 69.
    Nalabothula N, McVicker G, Maiorano J, Martin R, Pritchard JK, Fondufe-Mittendorf YN. The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation. BMC Genom. 2014;15:92.Google Scholar
  70. 70.
    Ner SS, Blank T, Perez-Paralle ML, Grigliatti TA, Becker PB, Travers AA. HMG-D and histone H1 interplay during chromatin assembly and early embryogenesis. J Biol Chem. 2001;276:37569–76.PubMedGoogle Scholar
  71. 71.
    Ngo HB, Kaiser JT, Chan DC. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat Struct Mol Biol. 2011;18:1290.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Nightingale K, Dimitrov S, Reeves R, Wolffe AP. Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J. 1996;15:548–61.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Nissen MS, Reeves R. Changes in superhelicity are introduced into closed circular DNA by binding of high mobility group protein I/Y. J Biol Chem. 1995;270:4355–60.PubMedGoogle Scholar
  74. 74.
    Nusse R, Clevers HJC. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.PubMedGoogle Scholar
  75. 75.
    Orphanides G, Wu W-H, Lane WS, Hampsey M, Reinberg D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature. 1999;400:284.PubMedGoogle Scholar
  76. 76.
    Panne D. The enhanceosome. Curr Opin Struct Biol. 2008;18:236–42.PubMedGoogle Scholar
  77. 77.
    Papoulas O, Daubresse G, Armstrong JA, Jin J, Scott MP, Tamkun JW. The HMG-domain protein BAP111 is important for the function of the BRM chromatin-remodeling complex in vivo. Proc Natl Acad Sci USA. 2001;98:5728–33.PubMedGoogle Scholar
  78. 78.
    Payet D, Travers A. The acidic tail of the high mobility group protein HMG-D modulates the structural selectivity of DNA binding 1. J Mol Biol. 1997;266:66–75.PubMedGoogle Scholar
  79. 79.
    Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GT, Houben A, Grasser KD. The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. New Phytol. 2011;192:577–89.PubMedGoogle Scholar
  80. 80.
    Pedersen DS, Merkle T, Marktl B, Lildballe DL, Antosch M, Bergmann T, Tönsing K, Anselmetti D, Grasser KD. Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins. Plant Physiol. 2010;154:110.163055.Google Scholar
  81. 81.
    Pil PM, Lippard SJ. Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science. 1992;256:234–7.PubMedGoogle Scholar
  82. 82.
    Prochazkova Schrumpfova P, Fojtova M, Mokros P, Grasser KD, Fajkus JJ. Role of HMGB proteins in chromatin dynamics and telomere maintenance in Arabidopsis thaliana. Curr Protein Pept Sci. 2011;12:105–11.Google Scholar
  83. 83.
    Pruss D, Reeves R, Bushman FD, Wolffe AP. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem. 1994;269:25031–41.PubMedGoogle Scholar
  84. 84.
    Reeves R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene. 2001;277:63–81.PubMedGoogle Scholar
  85. 85.
    Reeves R. Nuclear functions of the HMG proteins. Biochim Biophys Acta. 2010;1799:3–14.PubMedGoogle Scholar
  86. 86.
    Reeves R, Adair JE. Role of high mobility group (HMG) chromatin proteins in DNA repair. DNA Repair. 2005;4:926–38.PubMedGoogle Scholar
  87. 87.
    Reeves R, Nissen M. Interaction of high mobility group-I (Y) nonhistone proteins with nucleosome core particles. J Biol Chem. 1993;268:21137–46.PubMedGoogle Scholar
  88. 88.
    Reinberg D, Sims RJ. de FACTo nucleosome dynamics. J Biol Chem. 2006;281:23297–301.PubMedGoogle Scholar
  89. 89.
    Resar LM. The high mobility group A1 gene: transforming inflammatory signals into cancer? Cancer Res. 2010;70:436–9.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290:2105–10.PubMedGoogle Scholar
  91. 91.
    Ritt C, Grimm R, Fernandez S, Alonso JC, Grasser KD. Basic and acidic regions flanking the HMG domain of maize HMGa modulate the interactions with DNA and the self-association of the protein. Biochemistry. 1998;37:2673–81.PubMedGoogle Scholar
  92. 92.
    Robinson PJ, Fairall L, Huynh VA, Rhodes DJ. EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci. 2006;103:6506–11.PubMedGoogle Scholar
  93. 93.
    Röttgers K, Krohn NM, Lichota J, Stemmer C, Merkle T, Grasser KD. DNA-interactions and nuclear localisation of the chromosomal HMG domain protein SSRP1 from maize. Plant J. 2000;23:395–405.PubMedGoogle Scholar
  94. 94.
    Rowell JP, Simpson KL, Stott K, Watson M, Thomas JO. HMGB1-facilitated p53 DNA binding occurs via HMG-Box/p53 transactivation domain interaction, regulated by the acidic tail. Structure. 2012;20:2014–24.PubMedGoogle Scholar
  95. 95.
    Roy A, Dutta A, Roy D, Ganguly P, Ghosh R, Kar RK, Bhunia A, Mukhobadhyay J, Chaudhuri S. Deciphering the role of the AT-rich interaction domain and the HMG-box domain of ARID-HMG proteins of Arabidopsis thaliana. Plant Mol Biol. 2016;92:371–88.PubMedGoogle Scholar
  96. 96.
    Rubio-Cosials A, Sydow JF, Jiménez-Menéndez N, Fernández-Millán P, Montoya J, Jacobs HT, Coll M, Bernadó P, Solà M. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat Struct Mol Biol. 2011;18:1281.PubMedGoogle Scholar
  97. 97.
    Saitoh Y, Laemmli UK. Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell. 1994;76:609–22.PubMedGoogle Scholar
  98. 98.
    Sampson EM, Haque ZK, Ku MC, Tevosian SG, Albanese C, Pestell RG, Paulson KE, Yee ASJTEj (2001) Negative regulation of the Wnt–β‐catenin pathway by the transcriptional repressor HBP1. 20: 4500-4511.Google Scholar
  99. 99.
    Schultz TF, Spiker S, Quatrano RS. Histone H1 enhances the DNA binding activity of the transcription factor EmBP-1. J Biol Chem. 1996;271:25742–5.PubMedGoogle Scholar
  100. 100.
    Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu R-M, Zhu P, Li G. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science. 2014;344:376–80.PubMedGoogle Scholar
  101. 101.
    Stamos JL, Weis WI. The β-catenin destruction complex. Cold Spring Harbor Perspect Biol. 2013;5:a007898.Google Scholar
  102. 102.
    Stros M, Launholt D, Grasser KD. The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci. 2007;64:2590–606.PubMedGoogle Scholar
  103. 103.
    Stros M, Muselikova E. A role of basic residues and the putative intercalating phenylalanine of the HMG-1 box B in DNA supercoiling and binding to four-way DNA junctions. J Biol Chem. 2000;275:35699–707.PubMedGoogle Scholar
  104. 104.
    Th’ng JP, Sung R, Ye M, Hendzel MJ. H1 family histones in the nucleus control of binding and localization by the C-terminal domain. J Biol Chem. 2005;280:27809–14.PubMedGoogle Scholar
  105. 105.
    Thomas JO, Travers AA. HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci. 2001;26:167–74.PubMedGoogle Scholar
  106. 106.
    Trieschmann L, Postnikov YV, Rickers A, Bustin M. Modular structure of chromosomal proteins HMG-14 and HMG-17: definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain. Mol Cell Biol. 1995;15:6663–9.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Ueda T, Catez F, Gerlitz G, Bustin M. Delineation of the protein module that anchors HMGN proteins to nucleosomes in the chromatin of living cells. Mol Cell Biol. 2008;28:2872–83.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Verrijdt G, Haelens A, Schoenmakers E, Rombauts W, Claessens F. Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. Biochem J. 2002;361:97–103.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Wang W, Chi T, Xue Y, Zhou S, Kuo A, Crabtree GR. Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc Natl Acad Sci. 1998;95:492–8.PubMedGoogle Scholar
  110. 110.
    Wegner M. All purpose Sox: the many roles of Sox proteins in gene expression. Int J Biochem Cell Biol. 2010;42:381–90.PubMedGoogle Scholar
  111. 111.
    Weir HM, Kraulis PJ, Hill CS, Raine AR, Laue ED, Thomas JO. Structure of the HMG box motif in the B-domain of HMG1. EMBO J. 1993;12:1311–9.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Winkler DD, Luger K. The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem. 2011;R110:180778.Google Scholar
  113. 113.
    Winter N, Nimzyk R, Bösche C, Meyer A, Bullerdiek J. Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2. PLoS One. 2011;6:e18837.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Xia C, Wang YJ, Liang Y, Niu QK, Tan XY, Chu LC, Chen LQ, Zhang XQ, Ye D. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana. Plant J. 2014;79:741–56.PubMedGoogle Scholar
  115. 115.
    Yanagisawa S. Dof DNA-binding domains of plant transcription factors contribute to multiple protein-protein interactions. Eur J Biochem. 1997;250:403–10.PubMedGoogle Scholar
  116. 116.
    Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta (BBA) Gene Regul Mech. 2010;1799:149–56.Google Scholar
  117. 117.
    Yie J, Merika M, Munshi N, Chen G, Thanos D. The role of HMG I (Y) in the assembly and function of the IFN-β enhanceosome. EMBO J. 1999;18:3074–89.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Zhao K, Käs E, Gonzalez E, Laemmli UK. SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin. EMBO J. 1993;12:3237–47.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Zhou B-R, Feng H, Kato H, Dai L, Yang Y, Zhou Y, Bai Y. Structural insights into the histone H1-nucleosome complex. Proc Natl Acad Sci. 2013;110:19390–5.PubMedGoogle Scholar
  120. 120.
    Zhu H, Chen T, Zhu M, Fang Q, Kang H, Hong Z, Zhang Z. A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. Plant Physiol. 2008;148:337–47.PubMedPubMedCentralGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2018

Authors and Affiliations

  • Rwitie Mallik
    • 1
  • Anindya Kundu
    • 1
  • Shubho Chaudhuri
    • 1
    Email author
  1. 1.Division of Plant BiologyBose InstituteKolkataIndia

Personalised recommendations