Advertisement

The Nucleus

pp 1–8 | Cite as

Karyomorphological studies from mitotic metaphases in three carp species

  • Anita Bhatnagar
  • Abhay Singh Yadav
  • Neeru Kamboj
Original Article
  • 11 Downloads

Abstract

Karyological analysis of three carp species viz. Ctenopharyngodon idella, Hypophthalmichthyes molitrix, and Cyprinus carpio communis belonging to family Cyprinidae was carried out. The study samples of these species were collected from local fish farm in Haryana. The diploid chromosome number in C. idella was found to be 2n = 48, with 13 pairs of metacentric, 3 pairs of submetacentric and 8 pairs of acrocentric chromosomes. Chromosomal studies on the H. molitrix revealed the diploid chromosome number to be 2n = 48, with 6 pairs of metacentric, 6 pairs of submetacentric and 12 pairs of acrocentric chromosomes. The diploid chromosome number in C. c. communis was found to be 2n = 100, with 17 pairs of metacentric, 3 pairs of submetacentric, 1 pair of subtelocentric and 29 pairs of acrocentric chromosomes. Arm ratio, centromeric index and fundamental number of arms was also determined. The study reveals that diversification in these carp species of cyprinidae family is related to structural changes in chromosomes. Habitat conditions and anthropogenic activities might be responsible for incidence of pericentric inversions causing karyomorphological changes and thereby variation in karytype formulae vis-à-vis earlier reports.

Keywords

Chromosome Ctenopharyngodon idella Cyprinus carpio communis Hypophthalmichthyes molitrix Karyotype 

Notes

Acknowledgements

This study was conducted from the financial assistance received from UGC, New Delhi under SAP DRS [Sanction No. F.3-9/2016/DRS-I (SAP-II)].

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests amongst them.

References

  1. 1.
    Al-Sabti K, Kurelec B, Fijan N. Cytological studies of some Cyprinidae in Croatia. Vet Arhiv. 1983;53:65–70.Google Scholar
  2. 2.
    Anjum R. Biochemical and chromosomal genetic characteristics of several breeding populations of common carp (Cyprinus carpio L.). 1995. Ph.D. Thesis p. 98, University of Agriculture & Technology, Olsztyn, Republic of Poland.Google Scholar
  3. 3.
    Arai R. A Chromosome study on two cyprinid fishes, Acrossocheilus labiatus and Pseudorasbora pumila pumila, with notes on Eurasian cyprinids and their karyotypes. Bull Nat Sci Museum Tokyo. 1982;8:131–52.Google Scholar
  4. 4.
    Bertollo LAC, Oliveira C, Molina WF, Margarido VP, Fontes MS, Pastori MC, et al. Chromosome evolution in the erythrinid fish, Erythrinus erythrinus (Teleostei: Characiformes). Heredity. 2004;93:228–33.CrossRefGoogle Scholar
  5. 5.
    Bhatnagar A, Yadav AS, Kamboj N. Karyomorphology of three Indian major carps from Haryana, India. J Fish Sci. 2014;8:95–103.Google Scholar
  6. 6.
    Blaxhall PC. Chromosome karyotyping for fish using conventional and G- banding methods. J Fish Biol. 1983;22:417–24.CrossRefGoogle Scholar
  7. 7.
    Denton TE. Evolution of the fish karyotype. In: Thomas CC (ed) Fish chromosome methodology. Springfield, Illinois: Charles C. Thomas Publisher; 1973. p. 129–48.Google Scholar
  8. 8.
    Dorafshan S, Kalbassi MR. Karyological study of Ctenopharyngodon idella female Hypophthalmichthyes nobilis male F1 hybrid. Iran J Biol. 2007;20:277–85.Google Scholar
  9. 9.
    Farooq AG, Yousuf AR, Tripathi NK, Ummer RZ. On the chromosomes of two cyprinid fishes of the subfamily Schizothoracinae from Kashmir. Nat Sci. 2011;9:53–61.Google Scholar
  10. 10.
    Fitzsimons JM. A revision of two genera of goodied fishes (Cyprinidontiformes, Osteichthyes) from the Mexican Plateau. Copeia. 1972;8:728–56.CrossRefGoogle Scholar
  11. 11.
    Fonteles SBA, Fernandes FMDC, Lopes CE, Kulikoski R, Kulikoski JM, Almeida-Toledo LFD. Molecular markers in Chinese carp and their interspecific hybrids. Genet Mol Biol. 2005;28:203–17.CrossRefGoogle Scholar
  12. 12.
    Fredga K. Chromosomal changes in vertebrates evolution. Proc R Soc Lond. 1977;199:377–97.CrossRefGoogle Scholar
  13. 13.
    Hafez R, Labat R, Quillier R. Aneuploidie observee chez des populations de Gordons (Rutilus rutilus L.) et d’ Ablettes (Alburnus alburnus L.) de la Region Midi- Pyrenees. Bulletin de la Société d’Histoire Naturelle de Toulouse. 1978;114:85–92.Google Scholar
  14. 14.
    Jayaram KC. Freshwater fishes of Indian region. New Delhi: Narendra Publishing House; 1999.Google Scholar
  15. 15.
    Kasama M, Kobayashi H. Hybridization experiement between female crucian carp (Carassius Carassius) and male grass carp (Ctenopharyngodon idellus). Bull Jpn Soc Sci Fish. 1989;55:1001–6.CrossRefGoogle Scholar
  16. 16.
    Kavalco KF, Pazza R, Bertollo LAC, Moreira-Filho O. Karyotypic diversity and evolution of Loricaridae (Pisces, Siluriformes). Heredity. 2005;94:180–6.CrossRefGoogle Scholar
  17. 17.
    Khuda-Bukhsh AR, Barat A. Chromosomes in fifteen species of teleosts (Pisces). Caryologia. 1987;40:131–44.CrossRefGoogle Scholar
  18. 18.
    Khuda-Bukhsh AR, Chanda T, Barat A. Karyomorphology and evolution in some Indian hillstream fishes with particular reference to polyploidy in some species. In: Uyeno T, Arai R, Taniuchi T, Matsuura K (eds) Indo Pacific fish biology. Proceedings of the second international conference on Indo-Pacific fishes. Tokyo: Ichthyofaunistic Biogeography of the Japan; 1986. p. 886–898.Google Scholar
  19. 19.
    Lakra WS, Rishi KK. Chromosome of Indian fishes: an annovated list. Indian J Anim Sci. 1991;61:334–42.Google Scholar
  20. 20.
    LeGrande WH. Chromosomal evolution in North American catfishes (Siluriformes, Ictaluridae) with particular emphasis on the madtoms, Noturus. Copeia. 1981;1:33–52.CrossRefGoogle Scholar
  21. 21.
    LeGrande WH. Karyology of six species of Lousiana flat fishes (Pleuronectiformes, Osteichthyes). Copeia. 1975;3:516–22.CrossRefGoogle Scholar
  22. 22.
    Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosome. Hereditas. 1964;52:201–20.CrossRefGoogle Scholar
  23. 23.
    Macgregor UC. Chromosome preparation and analysis, chap 6. In: An introduction to animal cytogenetics. London: Chapman & Hall Press. 1993. p. 177–86Google Scholar
  24. 24.
    Manna GK. Cytogenetic studies on fishes and amphibia. In: Genetical Research in India. XVth international congress of genetics publication and information division. New Delhi: ICAR; 1983. p. 242–273.Google Scholar
  25. 25.
    Manna GK. Progress in fish cytogenetics. Nucleus. 1984;27:203–31.Google Scholar
  26. 26.
    Raicu P, Taisescu E, Cristian A. Diploid chromosome complement of the carp. Cytologia. 1972;37:355–8.CrossRefGoogle Scholar
  27. 27.
    Reddy PVGK. Comparative study of the karyomorphology of grass carp, Ctenopharyngodon idella (Val.), silver carp, Hypophthalmichthys molitrix (Val.) and their Fl hybrid. J Aqua. 1991;1:31–41.Google Scholar
  28. 28.
    Rishi KK, Shashikala, Rishi S. Karyotype study on six Indian hill-stream fishes. Chrom Sci. 1998;2:9–13.Google Scholar
  29. 29.
    Salih KJ, Majeed MH. Molecular study about Cyprinus carpio that implant in stations of marine science center. Int J Recent Sci Res. 2012;3:218–21.Google Scholar
  30. 30.
    Tan X, Jian GQ, Chen B, Chen L, Li X. Karyological analysis on redclaw crayfish Cherax quadricarinatus (Decapoda: Parastacidae). Aquaculture. 2004;34:65–76.CrossRefGoogle Scholar
  31. 31.
    Tjio JH, Whang J. Direct Chromosome Preparation of Bone Marrow Cells. In: Yunis JJ (ed.) Human chromosome methodology. New York: Academic press. 1965. p. 51–6.CrossRefGoogle Scholar
  32. 32.
    Uyeno T, Smith GR. Tetraploid origin of the karyotype of catostomid fishes. Science. 1972;175:644–6.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2018

Authors and Affiliations

  1. 1.Department of ZoologyKurukshetra UniversityKurukshetraIndia

Personalised recommendations