Advertisement

The Nucleus

, Volume 61, Issue 2, pp 137–143 | Cite as

Genetic fingerprinting of diploid and tetraploid cotton cultivars by retrotransposon-based markers

  • Zahra Noormohammadi
  • Niloofar Ibrahim-Khalili
  • Masoud Sheidai
  • Omran Alishah
Original Article
  • 29 Downloads

Abstract

Cotton (Gossypium spp.) is the most important natural fiber and oil source worldwide. The genus Gossypium has 45 diploid and 5 allotetraploid species. Currently cotton has only 4 cultivated species, two tetraploid species [G. hirsutum L. and G. barbadense L., (2n = 4x = 52)] and two diploid species [G. arboreum L. and G. herbaceum L., (2n = 2x = 26]. Continuous artificial selection and cultivation of available cotton cultivars has led to genetic erosion and loss of useful genetic loci from the available cotton germplasm. Different molecular markers used in genetic fingerprinting of cottons, revealed narrow genetic variability. In order to provide data on genetic diversity present in our cotton germplasm collection, we carried out genetic fingerprinting study of 17 diploid and tetraploid cotton accessions by inter retrotransposon amplified polymorphism markers. The results showed low-moderate genetic variability (0.0–18%) among the studied cultivars. However, we obtained high genetic variability within each species (45–80%). Moreover, some specific bands (alleles) were identified in these species. Such moderate to high genetic variability in cotton germplasm is of high importance for choosing parental plants for hybridization. Inter retrotransposon amplified polymorphism markers could efficiently differentiate the cultivars and the studied diploid species from tetraploids. Therefore, these are suitable molecular markers for fast screening and genetic fingerprinting of large cotton germplasm.

Keywords

Cotton Genetic variability IRAP STRUCTURE analysis 

Notes

Acknowledgements

We acknowledge Gorgan cotton research center for providing cotton samples.

References

  1. 1.
    Abd El-Moghny AM, Max Mariz S, GibelyReham HA. Nature of genetic divergence among some cotton genotypes. J Cotton Sci. 2015;19:368–74.Google Scholar
  2. 2.
    Alzohairy AM, Gyulai G, Ramadan MF, Edris S, Sabir JSM, Jansen RK, Eissa H, Bahieldin A. Retrotransposon-based molecular markers for assessment of genomic diversity. Funct Plant Biol. 2014;41:781–9.CrossRefGoogle Scholar
  3. 3.
    Biswas MK, Xu Q, Deng X. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hortic. 2010;124:254–61.CrossRefGoogle Scholar
  4. 4.
    Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007.  https://doi.org/10.1111/j.1471-8286.2007.01758.x.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Freeland JR, Kirk S, Petersen D, editors. Molecular ecology. 2nd ed. London: Wiley; 2011. p. 449.Google Scholar
  6. 6.
    Iqbal MJ, Aziz N, Saeed NA, Zafar Y, Malik KA. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet. 1997;94:139–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet. 1999;98:704–11.CrossRefGoogle Scholar
  8. 8.
    Krizman M, Jakse J, Baricevic D, Javornik B, Mirko P. Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric Slov. 2006;87:427–33.Google Scholar
  9. 9.
    Liu D, Guo X, Lin Z, Nie Y, Zhang X. Genetic diversity of Asian cotton (Gossypium arboretum L.) in China evaluated by microsatellite analysis. Genet Resour Crop Evol. 2006;53:1145–52.CrossRefGoogle Scholar
  10. 10.
    Malik W, Ashraf J, Iqbal MZ, Khan AA, Qayyum A, Abid MA, Noor E, Ahmad MQ, Abbasi GH. Molecular markers and cotton genetic improvement: current status and future prospects. Cairo: Hindawi Publishing Corporation; 2014. p. 15.  https://doi.org/10.1155/2014/607091 (Article ID 607091).CrossRefGoogle Scholar
  11. 11.
    Meirmans PG. AMOVA-based clustering of population genetic data. J Hered. 2012;103:744–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Meirmans PG, Van Tienderen PH. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes. 2004;4:792–4.CrossRefGoogle Scholar
  13. 13.
    Noormohammadi Z, Sheidai M, Foroutan M, Alishah O. Networking and Bayesian analyses of genetic affinity in cotton germplasm. Nucleus. 2015;58:33–45.CrossRefGoogle Scholar
  14. 14.
    Noormohammadi Z, Shamee MH, Sheidai M. Chromosome pairing analysis of some parental and F2 cotton progenies. Nucleus. 2013;56:37–40.CrossRefGoogle Scholar
  15. 15.
    Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95.CrossRefGoogle Scholar
  16. 16.
    Sheidai M, Afshar F, Keshavarzi M, Talebi SM, Noormohammadi Z, Shafaf T. Genetic diversity and genome size variability in Linum austriacum (Linaceae) populations. Biochem Syst Ecol. 2014;57:20–6.CrossRefGoogle Scholar
  17. 17.
    Sheidai M, Dokhanchei A, Noormohammadi Z. Karyotype and chromosome pairing analysis in some Iranian upland cotton (Gossypium hirsutum) cultivars. Cytologia. 2008;73:275–81.CrossRefGoogle Scholar
  18. 18.
    Sheidai M, Shahriari ZH, Roknizadeh H, Noormohammadi Z. RAPD and cytogenetic study of some tetraploid cotton (Gossypium hirsutum L.) cultivars and their hybrids. Cytologia. 2007;72:77–82.CrossRefGoogle Scholar
  19. 19.
    Sheidai M. Cytogenetic distinctiveness of sixty-six tetraploid cotton (Gossypium hirsutum L.) cultivars based on meiotic data. Acta Bot Croat. 2008;67:209–20.Google Scholar
  20. 20.
    Teo CH, Tan SH, Ho CL, Faridah QZ, Othman YR, Heslop-Harrison JS, Kalendar R, Schulman AH. Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. J Plant Biol. 2005;48:96–105.CrossRefGoogle Scholar
  21. 21.
    Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V. Genetic diversity and population structure in the US upland cotton (Gossypium hirsutum L.). Theor Appl Genet. 2014;127:283–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Ulloa M, Brubaker C, Chee P. Cotton. In: Kole C, editor. Genome mapping and molecular breeding, vol. 6. New York: Technical Crops Springer; 2007.Google Scholar
  23. 23.
    Van Esbroeck G, Bowman DT. Cotton germplasm diversity and its importance to cultivar development. J Cotton Sci. 1998;2:121–9.Google Scholar
  24. 24.
    Wang X, Ma J, Yang S, Zhang G, Ma ZY. Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers. Front Agric China. 2007;1:129–35.CrossRefGoogle Scholar
  25. 25.
    Weising K, Nybom H, Wolf K, Kahl G. DNA finger printing in plants. 2nd ed. Boca Raton: CRC Press; 2005. p. 444.CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Wang XF, Li ZK, Zhang GY, Ma ZY. Assessing genetic diversity of cotton cultivars using genomic and newly developed expressed sequence tag-derived microsatellite markers. Genet Mol Resour. 2011;10:1462–70.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2018

Authors and Affiliations

  • Zahra Noormohammadi
    • 1
  • Niloofar Ibrahim-Khalili
    • 1
  • Masoud Sheidai
    • 2
  • Omran Alishah
    • 3
  1. 1.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Faculty of Biological Sciences and TechnologyShahid Beheshti UniversityTehranIran
  3. 3.Cotton Research Institute of IranAgricultural Research, Education and Extension Organization (ARREO)GorganIran

Personalised recommendations