The Nucleus

, Volume 61, Issue 2, pp 121–128 | Cite as

New record of chromosomal features for nine species Cyperaceae from Thailand

  • Surapon Saensouk
  • P. SaensoukEmail author
Original Article


The present study details chromosome features and new record for nine Cyperaceae species from Thailand, namely Fimbristylis dichomata (L.) Vahl., F. miliacea (L.) Vahl., Rhynchospora chinensis Nees & Mey., R. corymbosa (L.) Britton., Cyperus compactus Retz., C. corymbosus Rottb., C. involucratus Roxb., C. iria L. and C. laxus Lam. var. laxus. Chromosome numbers for F. miliacea (L.) Vahl., C. compactus Retz., C. involucratus Roxb., C. iria L. and C. laxus Lam. var. laxus. Whereas, new numbers are reported for all these species, and for C. laxus this is the first report on its chromosome number. The somatic numbers range from 10 to 120 showing dysploidy. The study provides karyomorphological details of the examined species vis-à-vis published records. The karyotype and idiogram analysis reveal asymmetrical karyotypes falling into 1C and 2C categories, constituted by metacentric (m), submetacentric (sm), subtelocentric (st), acrocentric (a) and telocentric (t) karyomorphology. The karyotype formulae for species described here are : 2n (28) = 16 m + 2sm + 4st + 6t; 2n (20) = 2 m + 16sm + 2t; 2n (10) = 6 m + 4sm and 2n (10) = 4sm + 4st + 2t for F. dichomata (L.) Vahl.; F. miliacea (L.) Vahl., R. chinensis Nees & Mey. and R. corymbosa (L.) Britton, respectively. Our results expand the information related to chromosome rearrangements in karyotype differentiation in representative taxa of Cyperaceae.


Chromosome number variation in Cyperaceae Karyotype Idiogram Cyperaceae 



This research was financially supported by Mahasarakham University, Thailand and the Biodiversity-Based Economy Development Office (BEDO) from Thailand. The authors thank the Walai Rukhavej Botanical Research Institute, Mahasarakham University for allowing use of their facilities during the study. Warm thanks are also recorded to the curators and staff of the herbaria visited (BK, BKF, KKU and QSBG). Many thanks to Miss Rattanavalee Senawongse, Mrs. Kantiwa Saenprom, Mr. Thawanon Niamngon, Miss Pimtida Nathungmon, Mr. Pattana Pasorn for their helps in Laboratory technique and collect specimens. Also thanks to Dr. Jolyon Dodgson for language editing and suggestions to improve the manuscript.


  1. 1.
    Bruhl JJ. Sedge genera of the world: relationship and a new classification of The Cyperaceae. Aust Syst Bot. 1995;8:125–305.CrossRefGoogle Scholar
  2. 2.
    Darlington CD, Wylie AP. Chromosome Atlas of Flowering plants. London: George Allen and Unwin Ltd; 1955.Google Scholar
  3. 3.
    Greilhuber J, Speta F. C-banded karyotypes in the Scilla hohenackeri Group, S. persica and Puschkinia (Liliaceae). Plant Syst Evol. 1976;126:149–88.CrossRefGoogle Scholar
  4. 4.
    Heywood VH, Brummitt RK, Culham A, Seberg O. Flowering plant families of the world. Richmond: Royal Botanic Gardens, Kew; 2007. p. 363–5.Google Scholar
  5. 5.
    Hicks GC. Cytological studies in Cyperaceae, Eleocharis, Dulichium and Eriophorum. Bot Gaz. 1929;88:132–49.CrossRefGoogle Scholar
  6. 6.
    Hipp AL, Reznicek AA, Rothrock PE, Weber JA. Phylogeny and classification of Carex section Ovales (Cyperaceae). Int J Plant Sci. 2006;167:1029–48.CrossRefGoogle Scholar
  7. 7.
    Hipp AL, Rothrock PE, Roalson EH. The evolution of chromosomearrangements in Carex (Cyperaceae). Bot Rev. 2009;75:96–109.CrossRefGoogle Scholar
  8. 8.
    Hoshino T. Karyomorphological and cytogenetical studies on aneuploidy in Carex. J Sci Hiroshima Univ Div Bot. 1981;17:155–238.Google Scholar
  9. 9.
    Huziwara Y. Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosome of Aster. Am J Bot. 1962;49:116–9.CrossRefGoogle Scholar
  10. 10.
    Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. Plant systematics: a phylogenetic approach. 3rd ed. Sunderland: Sinauer Associates, Inc; 2007.Google Scholar
  11. 11.
    IUCN Red List of Threatened Species. Version 2013.2.
  12. 12.
    Levan A, Fredga K, Sandburg A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–20.CrossRefGoogle Scholar
  13. 13.
    Löve A, Löve D, Raymond M. Cytotaxonomy of Carex section Capillares. Can J Bot. 1957;35:715–61.CrossRefGoogle Scholar
  14. 14.
    Luceño M, Vanzela ALL, Guerra M. Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can J Bot. 1998;76:440–9.Google Scholar
  15. 15.
    Meesawat A, Phromprasit P. Cyperaceae along the nature trails in Nam Nao National Park. KKU Sci J. 2013;41:134–43.Google Scholar
  16. 16.
    Moore RJ. Index to plant chromosome numbers for 1972. Utrecht: Oosthoek; 1994.Google Scholar
  17. 17.
    Nijalingappa BHM, Nagaraj N, Tejavathi DH. In IOPB chromosome number reports LXII. Taxon. 1978;27:519–35.Google Scholar
  18. 18.
    Rath SP, Patnaik SN. Cytological Studies in Cyperaceae with Special Reference to its Taxonomy. Cvtologia. 1974;39:341–52.CrossRefGoogle Scholar
  19. 19.
    Reznicek AA. Evolution in sedges (Carex, Cyperaceae). Bot Rev. 1990;68:1409–32.Google Scholar
  20. 20.
    Romero ZC. A new method for estimating karyotype asymmetry. Taxon. 1986;35:526–30.CrossRefGoogle Scholar
  21. 21.
    Roalson EH. A synopsis of chromosome number variation in the Cyperaceae. Bot Rev. 2008;74:209–393.CrossRefGoogle Scholar
  22. 22.
    Rotreklová O, Bureš P, Repka R, Gunich V, Smada P, Hrallova I, Zederk F, Kouteeky T. Chromosome numbers of Carex. Preslia. 2011;83:25–58.Google Scholar
  23. 23.
    Sanyal B, Sharma A. Cytological studies in Indian Cyperaceae. Tribe Scirpeae. Cvtologia. 1972;37:13–32.CrossRefGoogle Scholar
  24. 24.
    Sharma AK, Bal AK. A cytological investigation of some members of family Cyperaceae. Phyton. 1956;6:7–22.Google Scholar
  25. 25.
    Simpson DA, Koyama T. Flora of Thailand, vol. 6, Part 4. Bangkok: Diamond; 1998. p. 247–485.Google Scholar
  26. 26.
    Stace CA. Cytology and cytogenetics as a fundamental taxonomic resourcefor the 20th and 21st centuries. Taxon. 2000;49:451–77.CrossRefGoogle Scholar
  27. 27.
    Stebbins GL. Chromosomal evolution in higher plants. London: Edward Arnold; 1971.Google Scholar
  28. 28.
    Subramanian D. Cytotaxonomical studies in south Indian Cyperaceae I. Species from the plains. Cytologia. 1988;53:67–72.CrossRefGoogle Scholar
  29. 29.
    Suzuka O. Chromosome numbers in pharmaceutical plants II. Kihara Inst Biol Res. 1953;6:79.Google Scholar
  30. 30.
    Tanaka N. Chromosome studies in Cyperaceae I. Cytologia Fujii Jub. 1937;2:814–21.CrossRefGoogle Scholar
  31. 31.
    Vanzela ALL, Luceño M, Guerra M. Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). Bot J Linn Soc. 2000;134:557–66.CrossRefGoogle Scholar
  32. 32.
    Watanabe K, Yahara T, Denda T, Kosuge K. Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res. 1999;112:145–61.CrossRefGoogle Scholar
  33. 33.
    Yano O. Cytological studies of seven taxa of Cyperaceae collected from the Bonin (Ogasawara) Islands. J Jap Bot. 2006;81:98–102.Google Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2018

Authors and Affiliations

  1. 1.Plant and Invertebrate Taxonomy and Its Applications Unit Group, Walai Rukhavej Botanical Research InstituteMahasarakham UniversityMahasarakhamThailand
  2. 2.Plant and Invertebrate Taxonomy and Its Applications Unit Group, Department of Biology, Faculty of ScienceMahasarakham UniversityKantarawichai District, MahasarakhamThailand

Personalised recommendations