The Nucleus

, Volume 60, Issue 3, pp 283–297 | Cite as

Application of molecular markers in plant genome analysis: a review

  • Sinchan Adhikari
  • Soumen Saha
  • Arijit Biswas
  • T. S. Rana
  • Tapas Kumar Bandyopadhyay
  • Parthadeb GhoshEmail author
Review Article


Advancement in the field of molecular biology has led to the development of various molecular markers which has revolutionized our understanding of the organization and evolution of plant genomes. Detection of genetic variation in plants offers an opportunity to understand the molecular basis of several biological phenomena. The reliability and efficiency of restriction digestion and polymerase chain reaction based random DNA markers have already proved their utility in taxonomical, evolutionary and ecological studies of plants. Progresses in the field of genomics and transcriptomics have enabled plant researchers to develop molecular markers derived from exon region of the genome which are termed as genic molecular markers (GMMs). GMMs are the part of the cDNA/EST sequences that mainly characterize the functional part of the genome. Next-generation DNA sequencing has also significantly contributed towards development of microRNA specific novel functional markers at the DNA level. This review focuses on the technical aspects of different molecular markers and their applications in the genome analysis.


Genic molecular markers Polymerase chain reaction Random DNA markers Sequence polymorphism 



S. Saha and P. Ghosh thankfully acknowledge University Grants Commission, New Delhi for the award of Postdoctoral Fellowship and Emeritus Fellowship, respectively.


  1. 1.
    Abdel-Rahman MM, Bayoumi SR, Barakat MN. Identification of molecular markers linked to Fusarium ear rot genes in maize plants Zea mays L. Biotechnol Biotechnol Equip. 2016;30:692–9.CrossRefGoogle Scholar
  2. 2.
    Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, et al. Complementary DNA sequencing: expressed sequence tags and the human genome project. Science. 1991;252:1651–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 2008;27:617–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T. Validation of Dwarf polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet. 2005;111:206–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Arnau G, Lallemand J, Bourgoin M. Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica. 2002;129:69–79.CrossRefGoogle Scholar
  6. 6.
    Avise JC. Molecular markers, natural history, and evolution. New York: Chapman & Hall; 1994.CrossRefGoogle Scholar
  7. 7.
    Becher SA, Steinmetz K, Weising K, Boury S, Peltier D, et al. Microsatellites for cultivar identification in Pelargonium. Theor Appl Genet. 2000;101:643–51.CrossRefGoogle Scholar
  8. 8.
    Beebee T, Rowe G. An introduction to molecular ecology. Oxford: Oxford University Press; 2004.Google Scholar
  9. 9.
    Biffi R, Restivo FM, Tassi F, Caporali E, Carboni A, Marziani GP, et al. A restriction fragment polymorphism probe for early diagnosis of gender in Asparagus officinalis L. Hort Sci. 1995;30:1463–4.Google Scholar
  10. 10.
    Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet. 1980;32:314–31.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bowers JE, Dangl GS, Vignani R, Meredith CP. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome. 1996;39:628–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Bredemeijer GMM, Arens P, Wouters D, Visser D, Vosman B. The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet. 1998;97:584–90.CrossRefGoogle Scholar
  13. 13.
    Brookes A. The essence of SNPs. Gene. 1999;234:177–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Broun P, Tanksley SD. Characterization of tomato clones with sequence similarity to human minisatellites 33.6 and 33.15. Plant Mol Biol. 1993;23:142–231.CrossRefGoogle Scholar
  15. 15.
    Burow MD, Blake TK. Molecular tools for the study of complex traits. In: Paterson AH, editor. Molecular dissection of complex traits. Washington, DC: CRC Press; 1998. p. 13–29.Google Scholar
  16. 16.
    Castillo A, Budak H, Varshney RK, Dorado G, Graner A, Hernandez P. Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol. 2008;8:97–105.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cheng J, Long Y, Khan MA, Wei C, Fu S, Fu J. Development and significance of RAPD-SCAR markers for the identification of Litchi chinensis Sonn. by improved RAPD amplification and molecular cloning. Electron J Biotechnol. 2015;18:35–9.CrossRefGoogle Scholar
  18. 18.
    Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspicl N, Theologis A, Yang WH, Hubbel E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel EM, Davis RW, Oefner PJ. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet. 1999;23:203–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Collard BCY, Mackill DJ. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep. 2009;27:86–93.CrossRefGoogle Scholar
  20. 20.
    Cruzan M. Genetic markers in plant evolutionary ecology. Ecology. 1998;79:400–12.CrossRefGoogle Scholar
  21. 21.
    Danilova TV, Karlov GI. Application of inter simple sequence repeat (ISSR) polymorphism for detection of sex specific molecular markers in Hop (Humulus lupulus L.). Euphytica. 2006;151:15–21.CrossRefGoogle Scholar
  22. 22.
    Deshpande D, Ramakrishna W, Mulay GP, Gupta VS, Ranjekar PK. Evolutionary and polymorphic organization of knotted1 homeobox in cereals. Theor Appl Genet. 1998;97:135–40.CrossRefGoogle Scholar
  23. 23.
    Dikshit HK, Singh A, Singh D, Aski M, Jain N, Hegde VS. Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris). Indian J Exp Biol. 2016;54:394–9.PubMedGoogle Scholar
  24. 24.
    Dong Y, Zhu H. Single-strand conformational polymorphism analysis: basic principles and routine practice. Methods Mol Med. 2005;108:149–57.PubMedGoogle Scholar
  25. 25.
    Falke KC, Melchinger AE, Flachenecker C, Kusterer B, Frisch M. Comparison of linkage maps from F2 and three times intermated generations in two populations of European flint maize (Zea mays L.). Theor Appl Genet. 2006;113:857–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Ford R, Le Roux K, Itman C, Brouwer JB, Taylor PWJ. Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica. 2002;124:397–405.CrossRefGoogle Scholar
  27. 27.
    Fu D, Ma BI, Mason AS, Xiao M, Wei L, An Z. MicroRNA-based molecular markers: a novel PCR-based genotyping technique in Brassica species. Plant Breed. 2013;132:375–81.CrossRefGoogle Scholar
  28. 28.
    Fukuchi A, Kikuchi F, Hirochika H. DNA fingerprinting of cultivated rice with rice retrotransposon probes. Jpn J Genet. 1993;68:195–204.CrossRefGoogle Scholar
  29. 29.
    Fukuoka S, Inoue T, Miyao A, Monna L. Mapping of sequence-tagged sites in rice by single conformation polymorphism. DNA Res. 1994;1:271–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Ganie SA, Mondal TK. Genome-wide development of novel miRNA-based microsatellite markers of rice (Oryza sativa) for genotyping applications. Mol Breed. 2015;35:1–12.CrossRefGoogle Scholar
  31. 31.
    Gaur R, Sethy NK, Choudhary S, Shokeen B, Gupta V, Bhatia S. Advancing the STMS genomic resources for defining new locations on the intra-specific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genom. 2011;12:117.CrossRefGoogle Scholar
  32. 32.
    Georges M, Gunawardana A, Threadgill DW, Lathrop M, Olsaker I, Mishra A, Sargeant LL, Schoeberlein A, Steele MR, Terry C, Threadgill DS, Zhao X, Holm T, Fries R, Womack JE. Characterization of a set of variable number of tandem repeat markers conserved in Bovidae. Genomics. 1991;11:24–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS. A genetic linkage map of ‘Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome. 1991;34:362–74.CrossRefGoogle Scholar
  34. 34.
    Goulao L, Oliveira CM. Molecular characterisation of cultivars of apple (Malus x domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica. 2001;122:81–9.CrossRefGoogle Scholar
  35. 35.
    Gupta M, Chyi YS, Romero-Severson J, Owen JL. Amplification of DNA markers from evolutionary diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet. 1994;89:998–1006.PubMedGoogle Scholar
  36. 36.
    Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics. 2003;270:315–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Hamada H, Kakunaga T. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature. 1982;298:396–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai T. A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci USA. 1991;88:9523–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hayashi K, Yandell DW. How sensitive is PCR-SSCP? Hum Mutat. 1993;2:338–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Hayashi K. PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl. 1992;3:73–9.CrossRefGoogle Scholar
  41. 41.
    Heath DD, Iwama GK, Devlin RH. PCR primed with the VNTR core sequences yields species specific patterns and hypervariable probes. Nucl Acids Res. 1993;21:5782–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet. 1986;72:761–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Hilu KW, Borsch T, Muller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW. Angiosperm phylogeny based on matK sequence information. Am J Bot. 2003;90:1758–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Hu CY, Tsai YZ, Lin SF. Development of STS and CAPS markers for variety identification and genetic diversity analysis of tea germplasm in Taiwan. Bot Stud. 2014;55:12.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hu J, Quiros CF. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep. 1991;10:505–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Hu J, Vick BA. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep. 2003;21:289–94.CrossRefGoogle Scholar
  47. 47.
    Hu J. Defining the sunflower (Helianthus annuus L.) linkage group ends with the Arabidopsis-type telomere sequence repeat-derived markers. Chromosome Res. 2006;14:535–48.PubMedCrossRefGoogle Scholar
  48. 48.
    Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res. 2001;29:25.CrossRefGoogle Scholar
  49. 49.
    Jeffreys AJ, Neumann R, Wilson V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell. 1990;60:473–85.PubMedCrossRefGoogle Scholar
  50. 50.
    Jeffreys AJ, Wilson V, Thein SL. Hypervariable “minisatellite” regions in human DNA. Nature. 1985;314:67–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Jenczewski E, Properi JM, Ronfort J. Differentiation between natural and cultivated populations of Medicago sativa (Legiminosae) from Spain: analysis with random amplified polymorphic DNA RAPD markers and comparison to allozymes. Mol Ecol. 1999;8:1317–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, Brar DS. Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet. 2000;100:1311–20.CrossRefGoogle Scholar
  53. 53.
    Julier C, Gouyon DD, Georges M, Guenet JL, Nakamura Y, Avner P, Lathrop GM. Minisatellite linkage maps in the mouse by cross-hybridization with human probes containing tandem repeats. Pro Natl Acad Sci USA. 1990;87:4585–9.CrossRefGoogle Scholar
  54. 54.
    Kendall J. Separations by the ionic migration method. Science. 1928;67:163–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Khaled AGA, Motawea MH, Said AA. Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. Genet Eng Biotechnol. 2015;13:243–52.CrossRefGoogle Scholar
  56. 56.
    Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B. The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M, editors. Proceedings of the international congress “In the wake of the double helix: from the green revolution to the gene revolution”, 27–31 May, 2003. Bologna: Avenue Media; 2005. p. 443–61.Google Scholar
  57. 57.
    Konieczny A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993;4:403–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet. 2001;103:455–61.CrossRefGoogle Scholar
  60. 60.
    Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989;44:397–401.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Liu Q, Wang H, Zhu L, Hu H, Sun Y. Genome-wide identification and analysis of miRNA-related single nucleotide polymorphisms (SNPs) in rice. Rice. 2013;6:10–20.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Liu Y, Nie YD, Han FX, Zhao XN, Dun BQ, Lu M. et al. Allelic variation of a soluble acid invertase gene (SAI-1) and development of a functional marker in sweet sorghum [Sorghum bicolor (L.) Moench]. Mol Breed. 2014;33:721–30.CrossRefGoogle Scholar
  63. 63.
    Liu Z, Furnier GR. Comparison of allozyme, RFLP and RAPD markers for revealing genetic variation within and between trembling aspen and big tooth aspen. Theor Appl Genet. 1993;87:97–105.PubMedGoogle Scholar
  64. 64.
    Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates; 1998.Google Scholar
  65. 65.
    Makino A, Sakashita H, Hidema J, Mae T, Ojima K, Osmond B. Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiol. 1992;100:1737–43.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mammadoy JA, Steffenson BJ, Saghai-Maroof MA. High resolution mapping of the barley leaf rust resistance gene Rph5 using barley expressed sequence tags (ESTs) and synteny with rice. Theor Appl Genet. 2005;111:1651–60.CrossRefGoogle Scholar
  67. 67.
    Manoj P, Banerjee NS, Ravichandran P. Development of sex-associated SCAR markers in Piper longum L. PGR Newsl. 2005;141:44–50.Google Scholar
  68. 68.
    Markert CL, Moller F. Multiple forms of enzymes, tissue, ontogenetic and species specific pattern. Pro Natl Acad Sci USA. 1959;45:753–63.CrossRefGoogle Scholar
  69. 69.
    McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, et al. Molecular mapping of rice genomes. Theor Appl Genet. 1988;76:815–29.PubMedCrossRefGoogle Scholar
  70. 70.
    McDermott JM, Brandle U, Dutly F, Haemmerli UA, Keller S, Muller KE, Wolf MS. Genetic variation in powdery mildew of barley: development of RAPD, SCAR and VNTR markers. Phytopathology. 1994;84:1316–21.CrossRefGoogle Scholar
  71. 71.
    Meyer W, Michell TG, Freedman EZ, Vilgalys R. Hybridization probes for conventional DNA fingerprinting used as single primers in polymerase chain reaction to distinguish strain of Cryptococcus neoformans. J Clin Microbiol. 1993;31:2274–80.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Michaels SD, Amasino RM. A robust method for detecting single nucleotide changes as polymorphic markers by PCR. Plant J. 1998;14:381–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Milewicz M, Sawicki J. Sex-linked markers in dioecious plants. Plant Omics J. 2013;6:144–9.Google Scholar
  74. 74.
    Ming R, Wang J, Moore PH, Paterson AH. Sex chromosomes in flowering plants. Am J Bot. 2007;94:141–56.PubMedCrossRefGoogle Scholar
  75. 75.
    Mishra RK, Gangadhar BH, Nookaraju A, Kumar S, Park SW. Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breed. 2012;131:118–24.CrossRefGoogle Scholar
  76. 76.
    Moore G, Lucas H, Batty N, Flavell R. A family of retrotransposons and associated genomic variation in wheat. Genomics. 1991;10:461–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Mullis KB, Ferre F, Gibbs RA. The polymerase chain reaction. Basel: Birkhauser; 1994.CrossRefGoogle Scholar
  78. 78.
    Murphy RW, Sites JW Jr, Buth DG, Haufler CH. Proteins: isozyme electrophoresis, in: Molecular systematics, 2nd ed. Hillis DM, Moritz C and Mable BK (eds.), Sinauer Associates, Sunderland, MA. 1996; pp. 51–120.Google Scholar
  79. 79.
    Nakamura Y, Carison M, Krapcho K, Kanamori M, White R. New approach for isolation of VNTR markers. Am J Hum Genet. 1988;43(6):854–9.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Nanda S, Kar B, Nayak S, Jha S, Joshi RK. Development of an ISSR based STS marker for sex identification in pointed gourd (Trichosanthes dioica Roxb.). Sci Hort. 2013;150:11–5.CrossRefGoogle Scholar
  81. 81.
    Nickrent DL, Soltis DE. A comparison of angiosperm phylogenies from nuclear 18 s rDNA and rbcL sequences. Ann Miss Bot Gard. 1995;82:208–34.CrossRefGoogle Scholar
  82. 82.
    Nithin C, Patwa N, Thomas A, Bahadur RP, Basak J. Computational prediction of miRNAs and their targets in Phaseolus vulgaris using simple sequence repeat signatures. BMC Plant Biol. 2015;15:140.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Olsen M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome. Science. 1989;245:1434–5.CrossRefGoogle Scholar
  84. 84.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA. 1989;86:2766–70.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet. 1993;85:985–93.PubMedCrossRefGoogle Scholar
  86. 86.
    Powell W, Morgante M, Andre C, Hanafey M, Vogel J, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996;2:225–38.CrossRefGoogle Scholar
  87. 87.
    Ramkumar G, Sivaranjani AKP, Pandey MK, Sakthivel K, Rani NS, Sudarshan I, et al. Development of a PCR-based SNP marker system for effective selection of kernel length and kernel elongation in rice. Mol Breed. 2010;26:735–40.CrossRefGoogle Scholar
  88. 88.
    Reddy PM, Sarla N, Siddiq EA. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica. 2002;128:9–17.CrossRefGoogle Scholar
  89. 89.
    Réjon CR, Jamilena M, Ramos MG, Parker JS, Rejon MR. Cytogenetic and molecular analysis of the multiple sex-chromosome system of Rumex acetosa. Heredity. 1994;72:209–15.CrossRefGoogle Scholar
  90. 90.
    Roy SK, Gangopadhyay G, Ghose K, Dey S, Basu D, Mukherjee KK. A cDNA-AFLP approach to look for differentially expressed gene fragments in dioecious pointed gourd (Trichosanthes dioica Roxb.) for understanding sex expression. Curr Sci. 2008;94:381–5.Google Scholar
  91. 91.
    Russell J, Booth A, Fuller J, Harrower B, Hedley P. A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome. 2004;47:389–98.PubMedCrossRefGoogle Scholar
  92. 92.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–91.PubMedCrossRefGoogle Scholar
  93. 93.
    Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, De Bruijn AY, Sullivan S, Qiu YL. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol. 2000;49:306–62.PubMedCrossRefGoogle Scholar
  94. 94.
    Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics. 1923;8:552–60.PubMedPubMedCentralGoogle Scholar
  95. 95.
    See D, Kanazin V, Talbert H, Blake TK. Electrophoretic detection of single nucleotide polymorphisms. Biotechniques. 2000;28:710–6.PubMedGoogle Scholar
  96. 96.
    Soller M. Beckmann JS Genetic polymorphism in varietal identification and genetic improvement. Theor Appl Genet. 1983;67:25–33.PubMedCrossRefGoogle Scholar
  97. 97.
    Soltis DE. Soltis PS Phylogenetic relationships in Saxifragaceae sensu lato: a comparison of topologies based on 18S rDNA and rbcL sequences. Am J Bot. 1997;84:504–22.PubMedCrossRefGoogle Scholar
  98. 98.
    Soltis DE, Soltis PS, Cleggy MT, Durbin M. Sequence divergence and phylogenetic-relationships in Saxifragaceae sensu lato. Proc Natl Acad Sci USA. 1990;87:4640–4.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Song QJ, Marek LF, Shoemaker RC. A new integrated genetic linkage map of the soybean. Theor Appl Genet. 2004;109:122–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Sturtevant AH. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool. 1913;14:43–59.CrossRefGoogle Scholar
  101. 101.
    Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997;277:1063–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Tanksley SD. Molecular markers in plant breeding. Plant Mol Biol Rep. 1983;1:3–8.CrossRefGoogle Scholar
  103. 103.
    Tautz D, Trice M, Dover GA. Cryptic simplicity in DNA is a major source of genetic variation. Nature. 1986;322:652–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Thomas MR, Scott NS. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet. 1993;86:985–90.PubMedCrossRefGoogle Scholar
  105. 105.
    Torado A, Koike M, Mochida K, Ogihara Y. SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet. 2006;112:1042–51.CrossRefGoogle Scholar
  106. 106.
    Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, et al. A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet. 2007;114:1091–113.PubMedCrossRefGoogle Scholar
  107. 107.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kulper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23(21):4407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wang D, Li Y, Li Z. Identification of a male-specific amplified fragment length polymorphism (AFLP) and a sequence characterized amplified region (SCAR) marker in Eucommia ulmoides Oliv. Int J Mol Sci. 2011;12:857–64.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Weiland JJ, Yu MH. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet. Crop Sci. 2003;43:1814–8.CrossRefGoogle Scholar
  110. 110.
    Weising K, Nybom H, Wolff K, Kahl G. DNA fingerprinting in plants: principles, methods, and applications. 2nd ed. Boca Raton: CRC Press, Taylor & Francis Group; 2005.CrossRefGoogle Scholar
  111. 111.
    Weising K, Nybom H, Wolff K, Meyer W. DNA fingerprinting in plants and fungi. Boca Rato: CRC Press; 1995.Google Scholar
  112. 112.
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18:7213–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wenzl P, Carling J, Kurna D, Jaccound D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (Dart) for whole genome profiling of barley. Proc Natl Acad Sci USA. 2004;101(26):9915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Williams NMV, Pande N, Nair S, Mohan M, Bennett J. Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor Appl Genet. 1990;82:489–98.CrossRefGoogle Scholar
  115. 115.
    Winberg BC, Zhou Z, Dallas JF, McIntyre CL, Gustafson JP. Characterization of minisatellite sequences from Oryza sativa. Genome. 1993;36:978–83.PubMedCrossRefGoogle Scholar
  116. 116.
    Winter P, Kahl G. Molecular marker technologies for plant improvement. World J Microbiol Biotechnol. 1995;11:438–48.PubMedCrossRefGoogle Scholar
  117. 117.
    Wolff K, Zietkiewicz E, Hofstra H. Identification of chrysanthemum cultivars and stability of fingerprint patterns. Theor Appl Genet. 1995;91:439–47.PubMedCrossRefGoogle Scholar
  118. 118.
    Wong Z, Wilson V, Jeffreys AJ, Thein SL. Cloning a selected fragment from a human DNA “fingerprint”: isolation of an extremely polymorphic minisatellite. Nucleic Acids Res. 1986;14:4605–16.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wu KS, Jones R, Danneberger L, Scolnik A. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res. 1994;22:3257–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Office. Publication 0534858 A1 Bulletin. 1993; 93(13).Google Scholar
  121. 121.
    Zhou L, Chen Z, Lang X, Du B, Liu K, Yang G, et al. Development and validation of a PCR-based functional marker system for the brown planthopper resistance gene Bph14 in rice. Breed Sci. 2013;63:347–52.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics. 1994;20:176–83.PubMedCrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2017

Authors and Affiliations

  • Sinchan Adhikari
    • 1
  • Soumen Saha
    • 1
    • 2
  • Arijit Biswas
    • 3
  • T. S. Rana
    • 4
  • Tapas Kumar Bandyopadhyay
    • 5
  • Parthadeb Ghosh
    • 1
    Email author
  1. 1.Cytogenetics and Plant Breeding Section, Plant Biotechnology Research Unit, Department of BotanyUniversity of KalyaniKalyani, NadiaIndia
  2. 2.Cytogenetics and Plant Breeding Section, Department of SericultureRaiganj UniversityUttar DinajpurIndia
  3. 3.Department of BiotechnologyVidyasagar UniversityRangamati, MedinipurIndia
  4. 4.Molecular Systematics/Plant Biodiversity & Conservation Biology DivisionCSIR-National Botanical Research InstituteLucknowIndia
  5. 5.Department of Molecular Biology and BiotechnologyUniversity of KalyaniKalyani, NadiaIndia

Personalised recommendations