Advertisement

The Nucleus

, Volume 60, Issue 2, pp 93–109 | Cite as

Cancer-immune therapy: restoration of immune response in cancer by immune cell modulation

  • Abir K. Panda
  • Sayantan Bose
  • Tania Sarkar
  • Dia Roy
  • Dwaipayan Chakraborty
  • Sreeparna Chakraborty
  • Irene Sarkar
  • Gaurisankar SaEmail author
Review Article

Abstract

Immune systems play a pivotal role in recognizing cancer and induce effective immune responses for their clearance. Avoidance of immune system is one of the major hallmarks in cancer progression that successively transforms immune surveillance (tumor eradication) to immune tolerance (tumor progression). Modulation of immune cells to harness the power of effective immune responses has been long-term goals for promising strategies of cancer immune therapy. Monoclonal antibodies, immune modulators, vaccines, immune checkpoint blockers are now widely used in cancer immunotherapy. Immunotherapy also provides supportive care against high-dose cancer chemotherapy regimens. Recently immunotherapy was adopted as one of the major approaches during bone marrow transplant of hematologic malignancy. Immune-based therapeutic strategies efficiently restrict tumor evasion and have also shown efficacy against multi-drug resistant cells, one of the most crucial complications in cancer treatment. Advances in immunology and understanding the roles of immune cells in cancer microenvironment have led to numerous specific strategies to boost immune components that successively dampen cancer progression. In this review, we have described several effective immune therapy strategies that target tolerogenic immune cells to become immunogenic and restore immune surveillance in cancer. Manipulation of immune cells by novel therapeutic strategies strive to induce antitumor immune responses by expanding effective anti-tumor T cell immune responses, evoking immune activation signaling and restraining regulatory pathway that established immune-tolerance. The future of cancer immunotherapy relies on a combination of these effective strategies to harness the immune power to restrict cancer advancement.

Keywords

Cancer immunotherapy Immune cells T cell therapies Immune checkpoints Combinatorial therapies 

Notes

Acknowledgement

This work was supported by research grants from University Grants Commission, Council of Scientific and Industrial Research and Department of Science and Technology, Govt. of India.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004;24:2783–840.PubMedGoogle Scholar
  2. 2.
    Agha-Mohammadi S, Lotze MT. Immunomodulation of cancer: potential use of selectively replicating agents. J Clin Invest. 2000;105:1173–6.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Aversa F, Tabilia A, Velardi A, Cunningham I, Terenzi A, Falzetti F, et al. Treatment of high-risk acute leukemia with T–cell–depleted stem cells from related donorswith one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22:1897–906.PubMedCrossRefGoogle Scholar
  5. 5.
    Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;51:130–3.CrossRefGoogle Scholar
  6. 6.
    Brahmer JR, Topalian SL, Powderly J, Wollner I, Picus J, Drake CG, et al. Phase II experience with MDX-1106 (Ono-4538), an anti-PD-1 monoclonal antibody, in patients with selected refractory or relapsed malignancies. J Clin Oncol. 2009;27:3018.Google Scholar
  7. 7.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Brandau S, Riemensberger J, Jacobsen M, Kemp D, Zhao W, Zhao X, et al. NK cells are essential for effective BCG immunotherapy. Int J Cancer. 2001;92:697–702.PubMedCrossRefGoogle Scholar
  9. 9.
    Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118:4817–28.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Carballido E, Veliz M, Komrokji R, Pinilla-Ibarz J. Immunomodulatory drugs and active immunotherapy for chronic lymphocytic leukemia. Cancer Control. 2012;19:54–67.PubMedGoogle Scholar
  11. 11.
    Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy–inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res. 2012;18:6580–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev. 2009;229:173–91.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Curiel TJ. Regulatory T cells and treatment of cancer. Curr Opin Immunol. 2008;20:241–6.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1:54–67.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dmitry IG, Suzanne O, Vincenzo B. Coordinated regulation of myeloidcells by tumours. Nat Rev Immunol. 2012;12:253–69.CrossRefGoogle Scholar
  20. 20.
    Donia M, Fagone P, Nicoletti F, Andersen RS, Høgdall E, Straten PT, et al. BRAF inhibition improves tumor recognition by the immune system: potential implications for combinatorial therapies against melanoma involving adoptive T-cell transfer. Oncoimmunology. 2012;1:1476–83.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol. 2009;27:83–117.PubMedCrossRefGoogle Scholar
  22. 22.
    Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, et al. Tumor hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 2011;475:226–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 2014;211:715–25.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5:215ra172.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:166–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Folkl A, Bienzle D. Structure and function of programmed death (PD) molecules. Vet Immunol Immunopathol. 2010;134:33–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Fracchia KM, Pai C, Walsh CM. Modulation of T cell metabolism and function through calcium signalling. Front Immunol. 2013;4:324.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19:1225–31.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Freeman-Keller M, Weber JS. Anti-programmed death receptor 1 immunotherapy in melanoma: rationale, evidence and clinical potential. Ther Adv Med Oncol. 2015;7:12–21.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014;5:235.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ. Acid-Mediated Tumor Invasion: a Multidisciplinary Study. Cancer Res. 2006;66:5216–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Ge Y, Xi H, Ju S, Zhang X. Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice. Cancer Lett. 2013;336:253–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Gelao L, Criscitiello C, Esposito A, Goldhirsch A, Curigliano G. Immune checkpoint blockade in cancer treatment: a double-edged sword cross-targeting the host as an “innocent bystander”. Toxins (Basel). 2014;6:914–33.CrossRefGoogle Scholar
  37. 37.
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.PubMedCrossRefGoogle Scholar
  38. 38.
    Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 2013;13:5.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, et al. NKG2D–deficient mice are defective in tumor surveillance in models of spontaneousmalignancy. Immunity. 2008;28:571–80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Guo ZS, Hong JA, Irvine KR, Chen GA, Spiess PJ, Liu Y, et al. De novo induction of a cancer/testis antigen by 5-Aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res. 2006;66:1105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA. 2007;104:3360–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hansen TH, Bouvier M. MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol. 2009;9:503–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Hans-Gustaf L, Karl-Johan M. Prospects for the use of NK cells inimmunotherapy of human cancer. Nat Rev Immunol. 2007;7:329–40.CrossRefGoogle Scholar
  44. 44.
    Hartmann E, Wollenberg B, Rothenfusser S, Wagner M, Wellisch D, Mack B, et al. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res. 2003;63:6478–87.PubMedGoogle Scholar
  45. 45.
    Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005;128:192–203.PubMedCrossRefGoogle Scholar
  46. 46.
    He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep. 2015;13:5.Google Scholar
  47. 47.
    Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50:799–807.PubMedCrossRefGoogle Scholar
  48. 48.
    Hofmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, Chua R, et al. Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci USA. 2008;105:20422–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Im JS, Arora P, Bricard G, Molano A, Venkataswamy MM, Baine I, et al. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity. 2009;30:888–98.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114:535–46.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Joncker NT, Fernandez NC, Treiner E, Vivier E, Raulet DH. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J Immunol. 2009;182:4572–80.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Keir ME, Francisco LM, Sharpe AH. PD-1 and its ligands in T-cell immunity. Curr Opin Immunol. 2007;19:309–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016;27:1492–504.PubMedCrossRefGoogle Scholar
  55. 55.
    Kim S, Lalani S, Parekh VV, Vincent TL, Wu L, Van Kaer L. Impact of bacteria on the phenotype, functions, and therapeutic activities of invariant NKT cells in mice. J Clin Invest. 2008;118:2301–15.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA. 2014;111:11774–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116:4099–102.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119:2709–20.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N, et al. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother. 2006;55:1064–71.PubMedCrossRefGoogle Scholar
  61. 61.
    Kooi S, Zhang HZ, Patenia R, Edwards CL, Platsoucas CD, Freedman RS. HLA class I expression on human ovarian carcinoma cells correlates with T-cell infiltration in vivo and T-cell expansion in vitro in low concentrations of recombinant interleukin-2. Cell Immunol. 1996;174:116–28.PubMedCrossRefGoogle Scholar
  62. 62.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMedCrossRefGoogle Scholar
  63. 63.
    Kwon BS, Hurtado JC, Lee ZH, Kwack KB, Seo SK, Choi BK, et al. Immune responses in 4-1BB (CD137)-deficient mice. J Immunol. 2002;168:5483–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Lathers D, Clark J, Achille N, Young M. Phase 1B study to improve immune responses in headand neck cancer patients using escalating doses of25–hydroxyvitamin D3. Cancer Immunol Immunother. 2004;53:422–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Li SY, Liu Y. Immunotherapy of melanoma with the immune costimulatory monoclonal antibodies targeting CD137. Clin Pharmacol. 2013;5:47–53.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Liu K, Nussenzweig MC. Origin and development of dendritic cells. Immunol Rev. 2010;234:45–54.PubMedCrossRefGoogle Scholar
  67. 67.
    Lizée G, Overwijk WW, Radvanyi L, Gao J, Sharma P, Hwu P. Harnessing the power of the immune system to target cancer. Annu Rev Med. 2013;64:71–90.PubMedCrossRefGoogle Scholar
  68. 68.
    Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002;20:70–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14:561–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–79.PubMedCrossRefGoogle Scholar
  71. 71.
    McBride JM, Fathman CG. A complicated relationship: fulfilling the interactive needs of the T lymphocyte and the dendritic cell. Pharmacogenomics J. 2002;2:367–76.PubMedCrossRefGoogle Scholar
  72. 72.
    Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino–biphosphonate–mediated MMP–9 inhibition breaks the tumor–bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 2007;67:11438–46.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res. 2013;19:1044–53.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4:762–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC. Expression of CD1d by myelomonocyticleukemias provides a target for cytotoxic NKT cells. Leukemia. 2003;17:1068–77.PubMedCrossRefGoogle Scholar
  77. 77.
    Miller JS, Cooley S, Parham P, Farag SS, Verneris MR, McQueen KL, et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood. 2005;106:4370–6.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signalling. Cell Res. 2011;21:103–15.PubMedCrossRefGoogle Scholar
  79. 79.
    Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117.PubMedCrossRefGoogle Scholar
  80. 80.
    Nagaraj S, Youn J-I, Weber H, Iclozan C, Lu L, Cotter M, et al. Anti-inflammatory triterpenoid blocksimmune suppressive function of myeloid-derived suppressor cells and improves immune response incancer. Clin Cancer Res. 2010;16:1812–23.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine e receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA. 2006;103:13132–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ostuni R, Kratochvill F, Murray PJ, Natoli G. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol. 2015;36:229–39.PubMedCrossRefGoogle Scholar
  83. 83.
    Palmer DC, Chan CC, Gattinoni L, Wrzesinski C, Paulos CM, Hinrichs CS, et al. Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proc Natl Acad Sci USA. 2008;105:8061–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Palucka Karolina, Banchereau Jacques. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, et al. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood. 2008;111:219–28.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, et al. Immune stimulatory receptor CD40 is required for T–cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 2010;70:99–108.PubMedCrossRefGoogle Scholar
  87. 87.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Park JS, Chyun JH, Kim YK, Line LL, Chew BP. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond). 2010;7:18.CrossRefGoogle Scholar
  89. 89.
    Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001.PubMedCrossRefGoogle Scholar
  90. 90.
    Peggs KS, Quezada SA, Allison JP. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol. 2009;157:9–19.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by humannatural killer cells. J Exp Med. 1999;190:1505–16.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pham CD, Mitchell DA. Chasing cancer with chimeric antigen receptor therapy. Immunotherapy. 2012;4:365–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA. 2003;100:8372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Pluta K, Luce MJ, Bao L, Agha-Mohammadi S, Reiser J. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med. 2005;7:803–17.PubMedCrossRefGoogle Scholar
  95. 95.
    Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12:269–81.PubMedCrossRefGoogle Scholar
  98. 98.
    Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25:846–59.PubMedCrossRefGoogle Scholar
  99. 99.
    Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, et al. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med. 1996;183:1185–92.PubMedCrossRefGoogle Scholar
  100. 100.
    Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–24.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Romagne F, André P, Spee P, Zahn S, Anfossi N, Gauthier L, et al. Pre-clinical characterization of1–7F9, a novel human anti-KIR therapeutic antibody that augments NK–mediated killing of tumor cells. Blood. 2009;114:2667–77.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Sánchez-García FJ. Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol. 2016;7:52.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42:607–12.PubMedCrossRefGoogle Scholar
  107. 107.
    Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology. 2000;101:169–77.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Schaer DA, Hirschhorn-Cymerman D, Wolchok JD. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. J Immunother Cancer. 2014;2:7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T–cell function in advanced cancer patients. Cancer Res. 2001;61:4756–60.PubMedGoogle Scholar
  110. 110.
    Shortman K, Heath WR. The CD8+ dendritic cell subset. Immunol Rev. 2010;234:18–31.PubMedCrossRefGoogle Scholar
  111. 111.
    Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36:494–502.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Swann JB, Uldrich AP, van Dommelen S, Sharkey J, Murray WK, Godfrey DI, et al. Type I natural killer T cells suppress tumors caused by p53 loss in mice. Blood. 2009;113:6382–5.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13:739–52.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol. 2005;23:975–1028.PubMedCrossRefGoogle Scholar
  115. 115.
    Tsai AK, Davila E. Producer T cells: using genetically engineered T cells as vehicles to generate and deliver therapeutics to tumors. Oncoimmunology. 2016;5:e1122158.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T, Zurawski G, et al. Harnessing human dendritic cell subsets for medicine. Immunol Rev. 2010;234:199–212.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al. 5–Fluorouracil selectively kills tumor associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–61.PubMedCrossRefGoogle Scholar
  119. 119.
    Vivier E, Ugolini S, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 2012;12:239–53.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Voena C, Chiarle R. Advances in cancer immunology and cancer immunotherapy. Discov Med. 2016;21:125–33.PubMedGoogle Scholar
  121. 121.
    Walia V, Mu EW, Lin JC, Samuels Y. Delving into somatic variation in sporadic melanoma. Pigment Cell Melanoma Res. 2012;25:155–70.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wargo JA, Robbins PF, Li Y, Zhao Y, El-Gamil M, Caragacianu D, et al. Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunol Immunother. 2009;58:383–94.PubMedCrossRefGoogle Scholar
  123. 123.
    Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32:1059–70.PubMedCrossRefGoogle Scholar
  125. 125.
    Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.PubMedCrossRefGoogle Scholar
  126. 126.
    Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK. Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol. 2005;27:485–97.PubMedCrossRefGoogle Scholar
  127. 127.
    Yang M, Ma C, Liu S, Shao Q, Gao W, Song B. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2- stimulating phenotype under hypoxia. Immunol Cell Biol. 2010;88:165–71.PubMedCrossRefGoogle Scholar
  128. 128.
    Yi KH, Chen L. Fine tuning the immune response through B7-H3 and B7-H4. Immunol Rev. 2009;229:145–51.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1:1223–5.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Zou W. Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.PubMedCrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2017

Authors and Affiliations

  • Abir K. Panda
    • 1
  • Sayantan Bose
    • 1
  • Tania Sarkar
    • 1
  • Dia Roy
    • 1
  • Dwaipayan Chakraborty
    • 1
  • Sreeparna Chakraborty
    • 1
  • Irene Sarkar
    • 1
  • Gaurisankar Sa
    • 1
    Email author
  1. 1.Division of Molecular MedicineBose InstituteKolkataIndia

Personalised recommendations