Advertisement

On Time-Optimal Problems with Lifeline

  • Nataly V. MuntsEmail author
  • Sergey S. Kumkov
Article
  • 9 Downloads

Abstract

This paper discusses time-optimal games with lifeline and corresponding boundary value problems for Hamilton–Jacobi equation as well. Existence of the value function for the time-optimal games with lifeline is proved. Existence of a minimax solution and its coincidence with the value function are shown.

Keywords

Time-optimal differential games Games with lifeline Value function Hamilton–Jacobi equations Minimax solutions 

Notes

References

  1. 1.
    Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Birkhäuser, BostonCrossRefzbMATHGoogle Scholar
  2. 2.
    Bardi M, Falcone M, Soravia P (1999) Numerical methods for pursuit-evasion games via viscosity solutions. In: Bardi M, Parthasarathy T, Raghavan TES (eds) Annals of the international society of dynamic games. Stochastic and differential games, vol 6. Birkhäuser, Boston, pp 105–175CrossRefGoogle Scholar
  3. 3.
    Bardi M, Koike S, Soravia P (2000) Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete Contin Dyn Syst 6(2):361–380MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Breitner M, Pesch H, Grimm W (1993) Complex differential games of pursuit-evasion type with state constraints, part 1: necessary conditions for optimal open-loop strategies. J Optim Theory Appl 78(3):419–441MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Breitner M, Pesch H, Grimm W (1993) Complex differential games of pursuit-evasion type with state constraints, part 2: numerical computation of optimal open-loop strategies. J Optim Theory Appl 78(3):443–463MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cardaliaguet P, Quincampoix M, Saint-Pierre P (1994) Some algorithms for differential games with two players and one target. RAIRO—Modélisation mathématique et analyse numérique 28(4):441–461MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cardaliaguet P, Quincampoix M, Saint-Pierre P (1999) Set-valued numerical analysis for optimal control and differential games. In: Bardi M, Raghavan TES, Parthasarathy T (eds) Annals of the international society of dynamic games. Stochastic and differential games, vol 4. Birkhäuser, Boston, pp 177–247CrossRefGoogle Scholar
  8. 8.
    Cardaliaguet P, Quincampoix M, Saint-Pierre P (2001) Pursuit differential games with state constraints. SIAM J Control Optim 39(5):1615–1632MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cardaliaguet P, Quincampoix M, Saint-Pierre P (2007) Differential games through viability theory: old and recent results. In: Jorgensen S, Quincampoix M, Vincent TL (eds) Annals of the international society of dynamic games. Advances in dynamic game theory, vol 9. Birkhäuser, Boston, pp 3–35CrossRefGoogle Scholar
  10. 10.
    Fisac J, Sastry S (2015) The pursuit-evasion-defense differential game in dynamic constrained environments. In: 2015 IEEE 54th annual conference on decision and control (CDC), 15–18 Dec 2015. Osaka, Japan, pp 4549–4556Google Scholar
  11. 11.
    Isaacs R (1965) Differential games. Wiley, New YorkzbMATHGoogle Scholar
  12. 12.
    Krasovskii NN, Subbotin AI (1974) Positional differential games. Nauka, Moscow (in Russian)zbMATHGoogle Scholar
  13. 13.
    Krasovskii NN, Subbotin AI (1988) Game-theoretical control problems. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Petrosjan LA (1965) A family of differential survival games in the space \(R^{n}\). Sov Math Dokl 6:377–380Google Scholar
  15. 15.
    Rakhmanov A, Ibragimov G, Ferrara M (2016) Linear pursuit differential game under phase constraint on the state of evader. Discrete Dyn Nat Soc 2016:1–6MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Subbotin AI (1995) Generalized solutions of first order PDEs: the dynamical optimization perspective. Birkhäuser, BostonCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and Mechanics, UrB RASYekaterinburgRussia

Personalised recommendations