Advertisement

Dynamic Games and Applications

, Volume 8, Issue 1, pp 141–156 | Cite as

Evolutionary Stability of Polymorphic Population States in Continuous Games

  • Dharini Hingu
  • K. S. Mallikarjuna Rao
  • A. J. Shaiju
Article

Abstract

Asymptotic stability of equilibrium in evolutionary games with continuous action spaces is an important question. Existing results in the literature require that the equilibrium state be monomorphic. In this article, we address this question when the equilibrium is polymorphic. We show that any uninvadable and finitely supported state is asymptotically stable equilibrium of replicator equation.

Keywords

Evolutionary games Continuous action spaces ESS Replicator dynamics Stability 

References

  1. 1.
    Archetti M, Scheuring I (2012) Review: Game theory of public goods in one-shot social dilemmas without assortment. J Ther Biol 299:9–20. doi: 10.1016/j.jtbi.2011.06.018 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Billingsley P (1999) Convergence of probability measures. Wiley series in probability and statistics. A Wiley-interscience, vol 2. Wiley, New York. doi: 10.1002/9780470316962 Google Scholar
  3. 3.
    Bomze IM (1990) Dynamical aspects of evolutionary stability. Monatsh Math 110(3–4):189–206. doi: 10.1007/BF01301675 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bomze IM (1991) Cross entropy minimization in uninvadable states of complex populations. J Math Biol 30(1):73–87. doi: 10.1007/BF00168008 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bomze IM, Pötscher BM (1989) Game theoretical foundations of evolutionary stability, Lecture Notes in Economics and Mathematical Systems, vol 324. Springer, BerlinCrossRefzbMATHGoogle Scholar
  6. 6.
    Bomze IM, Weibull JW (1995) Does neutral stability imply Lyapunov stability? Games Econ Behav 11(2):173–192. doi: 10.1006/game.1995.1048 Evolutionary game theory in biology and economicsMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Broom M, Luther RM, Ruxton GD (2008) A game-theoretic model of kleptoparasitic behavior in polymorphic populations. J Ther Biol 255:81–91. doi: 10.1016/j.jtbi.2008.08.001 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cheung MW (2014) Pairwise comparison dynamics for games with continuous strategy space. J Econ Theory 153(153):344–375. doi: 10.1016/j.jet.2014.07.001 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cressman R (2003) Evolutionary dynamics and extensive form games, MIT Press series on economic learning and social evolution, vol 5. MIT Press, CambridgeGoogle Scholar
  10. 10.
    Cressman R (2005) Stability of the replicator equation with continuous strategy space. Math. Social Sci. 50(2):127–147. doi: 10.1016/j.mathsocsci.2005.03.001 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cressman R, Hofbauer J (2005) Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics. Ther Popul Biol 67:47–59. doi: 10.1016/j.tpb.2004.08.001 CrossRefzbMATHGoogle Scholar
  12. 12.
    Fishman MA (2016) Polymorphic evolutionary games. J Ther Biol 398:130–135. doi: 10.1016/j.jtbi.2016.03.012 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Friedman D, Ostrov DN (2013) Evolutionary dynamics over continuous action spaces for population games that arise from symmetric two-player games. J Econom Theory 148(2):743–777. doi: 10.1016/j.jet.2012.07.004 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hingu D, Rao KM, Shaiju A (2016) Evolutionary stability of dimorphic population states. Ann Int Soc Dyn Games 14:249–266MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hofbauer J, Oechssler J, Riedel F (2009) Brown–von Neumann–Nash dynamics: the continuous strategy case. Games Econom Behav 65(2):406–429. doi: 10.1016/j.geb.2008.03.006 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems, London Mathematical Society Student Texts, vol. 7. Cambridge University Press, Cambridge. Mathematical aspects of selection, Translated from the GermanGoogle Scholar
  17. 17.
    Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Am Math Soc (N.S.) 40(4):479–519. doi: 10.1090/S0273-0979-03-00988-1 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lahkar R, Riedel F (2015) The logit dynamic for games with continuous strategy sets. Games Econ Behav 91:268–282. doi: 10.1016/j.geb.2015.03.009 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Maynard Smith J (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47(1):209–221. doi: 10.1016/0022-5193(74)90110-6 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, CambridgezbMATHGoogle Scholar
  21. 21.
    Oechssler J, Riedel F (2001) Evolutionary dynamics on infinite strategy spaces. Econ Theory 17(1):141–162. doi: 10.1007/PL00004092 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Oechssler J, Riedel F (2002) On the dynamic foundation of evolutionary stability in continuous models. J Econ Theory 107(2):223–252. doi: 10.1006/jeth.2001.2950 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Reiss RD (1989) Approximate distributions of order statistics, with applications to nonparametric statistics. Springer series in statistics. Springer, New York. doi: 10.1007/978-1-4613-9620-8
  24. 24.
    Sandholm WH (2010) Population games and evolutionary dynamics. Economic learning and social evolution. MIT Press, CambridgezbMATHGoogle Scholar
  25. 25.
    Schulz AW (2010) It takes two: sexual strategies and game theory. Stud Hist Philos Biol Biomed Sci 41:41–49. doi: 10.1016/j.shpsc.2009.12.004 CrossRefGoogle Scholar
  26. 26.
    van Veelen M, Spreij P (2009) Evolution in games with a continuous action space. Econ Theory 39(3):355–376. doi: 10.1007/s00199-008-0338-8 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vickers G, Cannings C (1987) On the definition of an evolutionarily stable strategy. J Theor Biol 129(3):349–353. doi: 10.1016/S0022-5193(87)80007-3 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Weibull JW (1995) Evolutionary game theory, with a foreword by Ken Binmore. MIT Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dharini Hingu
    • 1
  • K. S. Mallikarjuna Rao
    • 2
  • A. J. Shaiju
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.School of Industrial Engineering and Operations ResearchIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations