Advertisement

Dynamic Games and Applications

, Volume 3, Issue 4, pp 446–472 | Cite as

A Mean Field Capital Accumulation Game with HARA Utility

  • Minyi HuangEmail author
Article

Abstract

This paper introduces a mean field modeling framework for consumption-accumulation optimization. The production dynamics are generalized from stochastic growth theory by addressing the collective impact of a large population of similar agents on efficiency. This gives rise to a stochastic dynamic game with mean field coupling in the dynamics, where we adopt a hyperbolic absolute risk aversion (HARA) utility functional for the agents. A set of decentralized strategies is obtained by using the Nash certainty equivalence approach. To examine the long-term behavior we introduce a notion called the relaxed stationary mean field solution. The simple strategy computed from this solution is used to investigate the out-of-equilibrium behavior of the mean field system. Interesting nonlinear phenomena can emerge, including stable equilibria, limit cycles and chaos, which are related to the agent’s sensitivity to the mean field.

Keywords

Stochastic growth Investment Consumption Externality Mean field approximation Nash equilibrium Out-of-equilibrium behavior 

Notes

Acknowledgements

This work was partially supported by Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

  1. 1.
    Achdou Y, Capuzzo-Dolcetta I (2010) Mean field games: numerical methods. SIAM J Numer Anal 48(3):1136–1162 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adlakha S, Johari R, Weintraub G, Goldsmith A (2008) Oblivious equilibrium for large-scale stochastic games with unbounded costs. In: Proc 47th IEEE CDC, Cancun, Mexico, pp 5531–5538 Google Scholar
  3. 3.
    Amir R (1996) Continuous stochastic games of capital accumulation with convex transitions. Games Econ Behav 15:111–131 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andersson D, Djehiche B (2011) A maximum principle for SDEs of mean-field type. Appl Math Optim 63(3):341–356 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arthur WB (1999) Complexity and the economy. Science 284:107–109 CrossRefGoogle Scholar
  6. 6.
    Askenazy P, Le Van C (1999) A model of optimal growth strategy. J Econ Theory 85:24–51 CrossRefzbMATHGoogle Scholar
  7. 7.
    Balbus L, Nowak AS (2004) Construction of Nash equilibria in symmetric stochastic games of capital accumulation. Math Methods Oper Res 60:267–277 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bardi M (2012) Explicit solutions of some linear-quadratic mean field games. Netw Heterog Media 7(2):243–261 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Barro RJ, Sala-I-Martin X (1992) Public finance in models of economic growth. Rev Econ Stud 59(4):645–661 CrossRefzbMATHGoogle Scholar
  10. 10.
    Benhabib J (ed) (1992) Cycles and chaos in economic equilibrium. Princeton University Press, Princeton Google Scholar
  11. 11.
    Bensoussan A, Frehse J, Yam P (2012) Overview on mean field games and mean field type control theory. Preprint Google Scholar
  12. 12.
    Bensoussan A, Sung KCJ, Yam SCP, Yung SP (2011) Linear-quadratic mean-field games. Preprint Google Scholar
  13. 13.
    Brock WA, Mirman LJ (1972) Optimal economic growth and uncertainty: the discounted case. J Econ Theory 4:479–513 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Buckdahn R, Cardaliaguet P, Quincampoix M (2011) Some recent aspects of differential game theory. Dyn Games Appl 1(1):74–114 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cardaliaguet P (2012) Notes on mean field games Google Scholar
  16. 16.
    Carmona R, Delarue F (2012) A probabilistic analysis of mean field games. Preprint Google Scholar
  17. 17.
    Cass D (1965) Optimum growth in an aggregative model of capital accumulation. Rev Econ Stud 32(3):233–240 CrossRefGoogle Scholar
  18. 18.
    Chow YS, Teicher H (1997) Probability theory: independence, interchangeability, martingales, 3rd edn. Springer, New York CrossRefzbMATHGoogle Scholar
  19. 19.
    Day RH (1982) Irregular growth cycles. Am Econ Rev 72(3):406–414 Google Scholar
  20. 20.
    Dockner EJ, Nishimura K (2005) Capital accumulation games with a non-concave production function. J Econ Behav Organ 57:408–420 CrossRefGoogle Scholar
  21. 21.
    Duffie D, Fleming W, Soner HM, Zariphopoulou T (1997) Hedging in incomplete markets with HARA utility. J Econ Dyn Control 21:753–782 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gomes DA, Mohr J, Souza RR (2010) Discrete time, finite state space mean field games. J Math Pures Appl 93:308–328 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gast N, Gaujal B, Le Boudec J-Y (2012) Mean field for Markov decision processes: from discrete to continuous optimization. IEEE Trans Autom Control 57(9):2266–2280 CrossRefGoogle Scholar
  24. 24.
    Guéant O, Lasry J-M, Lions P-L (2011) Mean field games and applications. In: Carmona AR et al. (eds) Paris-Princeton lectures on mathematical finance 2010. Springer, Berlin, pp 205–266 CrossRefGoogle Scholar
  25. 25.
    Hart S (1973) Values of mixed games. Int J Game Theory 2:69–86 CrossRefzbMATHGoogle Scholar
  26. 26.
    Hernández-Lerma O, Lasserre JB (1996) Discrete-time Markov control processes: basic optimality criteria. Springer, New York CrossRefGoogle Scholar
  27. 27.
    Huang M (2010) Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J Control Optim 48(5):3318–3353 CrossRefzbMATHGoogle Scholar
  28. 28.
    Huang M, Caines PE, Malhamé RP (2003) Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: Proc 42nd IEEE CDC, Maui, HI, pp 98–103 Google Scholar
  29. 29.
    Huang M, Caines PE, Malhamé RP (2007) Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans Autom Control 52(9):1560–1571 CrossRefGoogle Scholar
  30. 30.
    Huang M, Caines PE, Malhamé RP (2012) Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans Autom Control 57(7):1736–1751 CrossRefGoogle Scholar
  31. 31.
    Huang M, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–251 MathSciNetzbMATHGoogle Scholar
  32. 32.
    Jovanovic B, Rosenthal RW (1988) Anonymous sequential games. J Math Econ 17:77–87 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kizilkale AC, Caines PE (2013) Mean field stochastic adaptive control. IEEE Trans Autom Control 58(4):905–920 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kolokoltsov VN, Li J, Yang W (2011) Mean field games and nonlinear Markov processes. Preprint Google Scholar
  35. 35.
    Lambson VE (1984) Self-enforcing collusion in large dynamic markets. J Econ Theory 34:282–291 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Lasry J-M, Lions P-L (2007) Mean field games. Jpn J Math 2(1):229–260 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Levhari D, Srinivasan TN (1969) Optimal savings under uncertainty. Rev Econ Stud 36(2):153–163 CrossRefGoogle Scholar
  38. 38.
    Li T, Zhang J-F (2008) Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans Autom Control 53(7):1643–1660 CrossRefGoogle Scholar
  39. 39.
    Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82(10):985–992 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Liu W-F, Turnovsky SJ (2005) Consumption externalities, production externalities, and long-run macroeconomic efficiency. J Public Econ 89:1097–1129 CrossRefGoogle Scholar
  41. 41.
    Ma Z, Callaway D, Hiskens I (2013) Decentralized charging control for large populations of plug-in electric vehicles. IEEE Trans Control Syst Technol 21(1):67–78 CrossRefGoogle Scholar
  42. 42.
    Mendelssohn R, Sobel MJ (1980) Capital accumulation and the optimization of renewable resource models. J Econ Theory 23:243–260 CrossRefzbMATHGoogle Scholar
  43. 43.
    Merton R (1969) Lifetime portfolio selection under uncertainty: the continuous time case. Rev Econ Stat 51(3):247–257 CrossRefGoogle Scholar
  44. 44.
    Nguyen SL, Huang M (2012) Linear-quadratic-Gaussian mixed games with continuum-parameterized minor players. SIAM J Control Optim 50(5):2907–2937 MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Nourian M, Caines PE (2012) ε-Nash mean field game theory for nonlinear stochastic dynamical systems with mixed agents. In: Proc 51st IEEE CDC, Maui, HI, pp 2090–2095 Google Scholar
  46. 46.
    Nourian M, Caines PE, Malhamé RP, Huang M (2012) Mean field control in leader-follower stochastic multi-agent systems: likelihood ratio based adaptation. IEEE Trans Autom Control 57(11):2801–2816 CrossRefGoogle Scholar
  47. 47.
    Olson LJ, Roy S (2006) Theory of stochastic optimal economic growth. In: Dana R-A, Le Van C, Mitra T, Nishimura K (eds) Handbook on optimal growth I. Springer, Berlin, pp 297–335 CrossRefGoogle Scholar
  48. 48.
    Olson LJ, Roy S (2000) Dynamic efficiency of conservation of renewable resources under uncertainty. J Econ Theory 95:186–214 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Ramsey FP (1928) A mathematical theory of saving. Econ J 38(152):543–559 CrossRefGoogle Scholar
  50. 50.
    Saari D (1995) Mathematical complexity of simple economics. Not Am Math Soc 42(2):222–230 MathSciNetzbMATHGoogle Scholar
  51. 51.
    Solow RM (1956) A contribution to the theory of economic growth. Q J Econ 70(1):65–94 CrossRefGoogle Scholar
  52. 52.
    Stokey NL, Lucas RE Jr., Prescott EC (1989) Recursive methods in economic dynamics. Harvard University Press, Cambridge zbMATHGoogle Scholar
  53. 53.
    Tembine H, Le Boudec J-Y, El-Azouzi R, Altman E (2009) Mean field asymptotics of Markov decision evolutionary games and teams. In: Proc GameNets, Istanbul, Turkey, pp 140–150 Google Scholar
  54. 54.
    Tembine H, Zhu Q, Basar T (2011) Risk-sensitive mean-field stochastic differential games. In: Proc 18th IFAC world congress, Milan, Italy Google Scholar
  55. 55.
    Wang B-C, Zhang J-F (2012) Distributed control of multi-agent systems with random parameters and a major agent. Automatica 48(9):2093–2106 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Weintraub GY, Benkard CL, Van Roy B (2008) Markov perfect industry dynamics with many firms. Econometrica 76(6):1375–1411 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Yin H, Mehta PG, Meyn SP, Shanbhag UV (2012) Synchronization of coupled oscillators is a game. IEEE Trans Autom Control 57(4):920–935 MathSciNetCrossRefGoogle Scholar
  58. 58.
    Yong J (2011) A linear-quadratic optimal control problem with mean-field stochastic differential equations. Preprint Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations