Advertisement

Dynamic Games and Applications

, Volume 3, Issue 3, pp 359–373 | Cite as

On the Core of Dynamic Cooperative Games

  • Ehud Lehrer
  • Marco Scarsini
Article

Abstract

We consider dynamic cooperative games, where the worth of coalitions varies over time according to the history of allocations. When defining the core of a dynamic game, we allow the possibility for coalitions to deviate at any time and thereby to give rise to a new environment. A coalition that considers a deviation needs to take the consequences into account because from the deviation point on, the game is no longer played with the original set of players. The deviating coalition becomes the new grand coalition which, in turn, induces a new dynamic game. Each stage game of the new dynamic game depends on the previous allocation. We define and characterize a new solution concept, the intertemporal core.

Keywords

Markovian dynamic game Intertemporal core 

Notes

Acknowledgements

E. Lehrer acknowledges the support of the Israel Science Foundation, Grant #762/045. The work of N. Scarsini was partially supported by SRG ESD 2012 044. The authors thank Sandro Brusco, three referees, and the associate editor for helpful comments and relevant references.

References

  1. 1.
    Allouch N, Wooders M (2008) Price taking equilibrium in economies with multiple memberships in clubs and unbounded club sizes. J Econ Theory 140:246–278. http://www.sciencedirect.com/science/article/pii/S0022053107001123 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Becker RA, Chakrabarti SK (1995) The recursive core. Econometrica 63:401–423 zbMATHCrossRefGoogle Scholar
  3. 3.
    Chander P, Wooders M (2010) Subgame perfect cooperation in an extensive game. Working Papers 1008, Department of Economics, Vanderbilt University. http://ideas.repec.org/p/van/wpaper/1008.html
  4. 4.
    Chwe MS-Y (1994) Farsighted coalitional stability. J Econ Theory 63:299–325. doi: 10.1006/jeth.1994.1044 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Diamantoudi E, Xue L (2007) Coalitions, agreements and efficiency. J Econ Theory 136:105–125 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gale D (1978) The core of a monetary economy without trust. J Econ Theory 19:456–491 MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Habis H, Herings PJ-J (2010) A note on the weak sequential core of dynamic TU games. Research Memoranda 022, Maastricht: METEOR, Maastricht Research School of Economics of Technology and Organization. http://econpapers.repec.org/RePEc:dgr:umamet:2010022
  8. 8.
    Hellman Z (2008) Bargaining set solution concepts in dynamic cooperative games. Technical report, Munich Personal RePEc Archive. http://mpra.ub.uni-muenchen.de/8798/
  9. 9.
    Konishi H, Ray D (2003) Coalition formation as a dynamic process. J Econ Theory 110:1–41 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Koutsougeras LC (1998) A two-stage core with applications to asset market and differential information economies. Econom Theory 11:563–584 MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kovalenkov A, Wooders M (2003) Approximate cores of games and economies with clubs. J Econ Theory 110:87–120 MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kovalenkov A, Wooders M (2005) Laws of scarcity for a finite game—exact bounds on estimations. Econom Theory 26:383–396. doi: 10.1007/s00199-003-0443-7 MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kovalenkov A, Wooders MH (2001) Epsilon cores of games with limited side payments: nonemptiness and equal treatment. Games Econ Behav 36:193–218. doi: 10.1006/game.2000.0815 MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kovalenkov A, Wooders MH (2001) An exact bound on epsilon for nonemptiness of epsilon cores of games. Math Oper Res 26:654–678. doi: 10.1287/moor.26.4.654.10001 MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kranich L, Perea A, Peters H (2005) Core concepts for dynamic TU games. Int Game Theory Rev 7:43–61 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lehrer E, Pauzner A (1999) Repeated games with differential time preferences. Econometrica 67:393–412. doi: 10.1111/1468-0262.00024 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lehrer E, Scarsini M (2012) On the core of dynamic cooperative games. arXiv:1203.2832
  18. 18.
    Oviedo J (2000) The core of a repeated n-person cooperative game. Eur J Oper Res 127:519–524 MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Petrosjan L, Zaccour G (2003) Time-consistent Shapley value allocation of pollution cost reduction. J Econ Dyn Control 27:381–398 MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Petrosjan LA (1977) Stability of the solutions in differential games with several players. Vestn Leningr Univ 19:46–52 MathSciNetGoogle Scholar
  21. 21.
    Petrosjan LA (1993) Differential games of pursuit. World Scientific, River Edge CrossRefGoogle Scholar
  22. 22.
    Predtetchinski A (2007) The strong sequential core for stationary cooperative games. Games Econ Behav 61:50–66 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Predtetchinski A, Herings PJ-J, Peters H (2002) The strong sequential core for two-period economies. J Math Econ 38:465–482 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Predtetchinski A, Herings PJ-J, Peters H (2004) The strong sequential core in a dynamic exchange economy. Econom Theory 24:147–162 MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Predtetchinski A, Herings PJJ, Perea A (2006) The weak sequential core for two-period economies. Int J Game Theory 34:55–65 MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ray D (1989) Credible coalitions and the core. Int J Game Theory 18:185–187. doi: 10.1007/BF01268157 zbMATHCrossRefGoogle Scholar
  27. 27.
    Ray D (2007) A game-theoretic perspective on coalition formation. Lipsey lectures. Oxford University Press, Oxford zbMATHCrossRefGoogle Scholar
  28. 28.
    Ray D, Vohra R (1999) A theory of endogenous coalition structures. Games Econ Behav 26:286–336. doi: 10.1006/game.1998.0648 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Shapley LS, Shubik M (1966) Quasi-cores in a monetary economy with nonconvex preferences. Econometrica 34:805–827. http://www.jstor.org/stable/1910101 zbMATHCrossRefGoogle Scholar
  30. 30.
    Wooders MH (1983) The epsilon core of a large replica game. J Math Econ 11:277–300. doi: 10.1016/0304-4068(83)90005-8 MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Wooders MH, Zame WR (1984) Approximate cores of large games. Econometrica 52:1327–1350. doi: 10.2307/1913508 MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Xue L (1998) Coalitional stability under perfect foresight. Econom Theory 11:603–627. doi: 10.1007/s001990050204 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.INSEADFontainebleau CedexFrance
  3. 3.Engineering System Design PillarSUTDSingaporeSingapore

Personalised recommendations