Advertisement

Evolutionary Games on Star Graphs Under Various Updating Rules

  • C. Hadjichrysanthou
  • M. BroomEmail author
  • J. Rychtář
Article

Abstract

Evolutionary game dynamics have been traditionally studied in well-mixed populations where each individual is equally likely to interact with every other individual. Recent studies have shown that the outcome of the evolutionary process might be significantly affected if the population has a non-homogeneous structure. In this paper we study analytically an evolutionary game between two strategies interacting on an extreme heterogeneous graph, the star graph. We find explicit expressions for the fixation probability of mutants, and the time to absorption (elimination or fixation of mutants) and fixation (absorption conditional on fixation occurring). We investigate the evolutionary process considering four important update rules. For each of the update rules, we find appropriate conditions under which one strategy is favoured over the other. The process is considered in four different scenarios: the fixed fitness case, the Hawk–Dove game, the Prisoner’s dilemma and a coordination game. It is shown that in contrast with homogeneous populations, the choice of the update rule might be crucial for the evolution of a non-homogeneous population.

Keywords

Fixation probability Absorption time Fixation time Structured populations Star graph 

Supplementary material

13235_2011_22_MOESM1_ESM.pdf (190 kb)
Evolutionary games on star graphs under various updating rules. (PDF 130 kB)

References

  1. 1.
    Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68:1923–1944. doi: 10.1007/s11538-006-9061-4 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Antal T, Redner S, Sood V (2006) Evolutionary dynamics on degree-heterogeneous graphs. Phys Rev Lett 96. doi: 10.1103/PhysRevLett.96.188104
  3. 3.
    Broom M, Rychtář J (2008) An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc R Soc A 464:2609–2627. doi: 10.1098/rspa.2008.0058 zbMATHCrossRefGoogle Scholar
  4. 4.
    Broom M, Rychtář J, Stadler B (2009) Evolutionary dynamics on small order graphs. J Interdiscip Math 12:129–140 zbMATHGoogle Scholar
  5. 5.
    Broom M, Hadjichrysanthou C, Rychtář J (2010) Evolutionary games on graphs and the speed of the evolutionary process. Proc R Soc A 466:1327–1346. doi: 10.1098/rspa.2009.0487 zbMATHCrossRefGoogle Scholar
  6. 6.
    Fu F, Wang L, Nowak MA, Hauert C (2009) Evolutionary dynamics on graphs: efficient method for weak selection. Phys Rev E 79. doi: 10.1103/PhysRevE.79.046707
  7. 7.
    Fudenberg D, Nowak MA, Taylor C, Imhof LA (2006) Evolutionary game dynamics in finite populations with strong selection and weak mutation. Theor Popul Biol 70:352–363. doi: 10.1016/j.tpb.2006.07.006 zbMATHCrossRefGoogle Scholar
  8. 8.
    Lieberman E, Hauert C, Nowak MA (2005) Evolutionary dynamics on graphs. Nature 433:312–316. doi: 10.1038/nature03204 CrossRefGoogle Scholar
  9. 9.
    Masuda N (2007) Participation costs dismiss the advantage of heterogeneous networks in evolution of cooperation. Proc R Soc B 274:1815–1821. doi: 10.1098/rspb.2007.0294 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Masuda N (2009) Directionality of contact networks suppresses selection pressure in evolutionary dynamics. J Theor Biol 258:323–334. doi: 10.1016/j.jtbi.2009.01.025 CrossRefGoogle Scholar
  11. 11.
    Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Harvard University Press, Cambridge zbMATHGoogle Scholar
  12. 12.
    Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505. doi: 10.1038/nature04605 CrossRefGoogle Scholar
  13. 13.
    Santos FC, Pacheco JM (2006) A new route to the evolution of cooperation. J Evol Biol 19:726–733. doi: 10.1111/j.1420-9101.2005.01063.x CrossRefGoogle Scholar
  14. 14.
    Sood V, Antal T, Redner S (2008) Voter models on heterogeneous networks. Phys Rev E 77. doi: 10.1103/PhysRevE.77.041121
  15. 15.
    Szolnoki A, Perc M, Danku Z (2008) Towards effective payoffs in the prisoner’s dilemma game on scale-free networks. Physica A 387:2075–2082. doi: 10.1016/j.physa.2007.11.021 Google Scholar
  16. 16.
    Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured populations. J Theor Biol 259:570–581. doi: 10.1016/j.jtbi.2009.03.035 CrossRefGoogle Scholar
  17. 17.
    Tomassini M, Pestelacci E, Luthi L (2007) Social dilemmas and cooperation in complex networks. Int J Mod Phys 18:1173–1185. doi: 10.1142/S0129183107011212 zbMATHCrossRefGoogle Scholar
  18. 18.
    Voelkl B (2010) The ‘Hawk–Dove’ game and the speed of the evolutionary process in small heterogeneous populations. Games 1:103–116. doi: 10.3390/g1020103 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Mathematical ScienceCity University LondonLondonUK
  2. 2.Department of Mathematics and StatisticsThe University of North Carolina at GreensboroGreensboroUSA

Personalised recommendations