Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Impact of Grafting Density on the Self-Assembly and Hydrophilicity of Succinylated Collagen

Abstract

Modification of protein could give their new functionality but would affect their intrinsic property and activity. In this paper, a series of succinylated collagen (SCol(n/1)) (n≥1) were prepared by modification of collagen with succinic anhydride at different molar ratio to amino groups amount of collagen. The impact of grafting density on the intrinsic self-assembly and additional hydrophilicity of succinylated collagen was explored. The results revealed that excessive grafting density of succinylated collagen would improve their hydrophilicity but weaken their self-assembly property, although the triple helix of collagen could be reserved after succinylation. SCol(1/1) (grafting density of 17%) with self-assembly property and good hydrophilicity was chosen to compare with native collagen. Compared to native collagen, thermostability of SCol(1/1) decreased slightly, however, SCol(1/1) could form softer hydrogel, which was more favorable for the proliferation of NIH/3 T3. The present work would help us to further understand the importance of grafting density for the design of modified collagen with intrinsic self-assembly property and additional new functionality.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    B. Brodsky and J. A. M. Ramshaw, Matrix Biol., 15, 545 (1997).

  2. (2)

    M. D. Shoulders and R. T. Raines, Annu. Rev. Biochem., 78, 929 (2009).

  3. (3)

    C. Li, H. Tian, L. Duan, Z. Tian, and G. Li, Int. J. Biol. Macromol., 57, 92 (2013).

  4. (4)

    M. C. Gómez-Guillén, B. Giménez, M. E. López-Caballero, and M. P. Montero, Food Hydrocoll., 25, 1813 (2011).

  5. (5)

    I. Kołodziejska, Z. E. Sikorski, and C. Niecikowska, Food Chem., 66, 153 (1999).

  6. (6)

    R. Sripriya, R. Kumar, S. Balaji, M. S. Kumar, and P. K. Sehgal, React. Funct. Polym., 71, 62 (2011).

  7. (7)

    J. Zhang, M. Zou, M. Zhang, B. Wei, C. Xu, D. Xie, and H. Wang, Food Biophys., 11, 380 (2016).

  8. (8)

    M. Zhang, C. Ding, J. Yang, S. Lin, L. Chen, and L. Huang, Carbohydr. Polym., 137, 410 (2016).

  9. (9)

    S.-H. Kim, J.-H. Lee, S.-Y. Yun, J.-S. Yoo, C.-H. Jun, K.-Y. Chung, and H. Suh, Rapid Commun. Mass Sp., 14, 2125 (2000).

  10. (10)

    Z. Zhang, W. Liu, D. Li, and G. Li, Biosci. Biotechnol. Biochem., 71, 2057 (2007).

  11. (11)

    R. Kumar, R. Sripriya, S. Balaji, M. S. Kumar, and P. K. Sehgal, J. Mol. Struct., 994, 117 (2011).

  12. (12)

    D. E. Birk, and R. L. Trelstad, J. Cell Biol., 103, 231 (1996).

  13. (13)

    P. Fratzl, Curr. Opin. Colloid. Interface Sci., 8, 32 (2003).

  14. (14)

    P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch, and S. Bernstorff, J. Struct. Biol., 122, 119 (1998).

  15. (15)

    J. E. Scott and A. M. Thomlinson, J. Anat., 192, 391 (1998).

  16. (16)

    L. Svensson, A. Aszódi, F. P. Reinholt, R. Fässler, D. Heinegard, and A. Oldberg, J. Biol. Chem., 274, 9636 (1999).

  17. (17)

    C. C. Dupont-Gillain, Colloid Surf. B, 124, 87 (2014).

  18. (18)

    J. Zhang, B. Wei, L. He, C. Xu, D. Xie, K.-W. Paik, and H. Wang, Macromol. Res., 25, 1105 (2017).

  19. (19)

    X. Tu, X. Chen, Y. Peng, J. Nan, B. Wei, L. He, C. Xu, Y. Xu, D. Xie, J. Zhang, and H. Wang, Macromol. Res., 26, 1233 (2018).

  20. (20)

    M. Zou, H. Yang, H. Wang, H. Wang, J. Zhang, B. Wei, H. Zhang, and D. Xie, Int. J. Biol. Macromol., 92, 1175 (2016).

  21. (21)

    G. K. Reddy and C. S. Enwemeka, Clin. Biochem., 29, 225 (1996).

  22. (22)

    G. Tronci, S. J. Russell, and D. J. Wood, J. Mater. Chem. B, 1, 3705 (2013).

  23. (23)

    M. H. Klapper and I. M. Klotz, Met. Enzymol., 25, 531 (1972).

  24. (24)

    J. Zhang, X. Tu, W. Wang, J. Nan, B. Wei, C. Xu, L. He, Y. Xu, S. Li, and H. Wang, Int. J. Biol. Macromol., 128, 885 (2019).

  25. (25)

    P. Noitup, M. T. Morrissey, and W. Garnjanagoonchorn, J. Food Biochem., 30, 547 (2006).

  26. (26)

    M. Yan, B. Li, X. Zhao, and S. Qin, Food Hydrocoll., 29, 199 (2012).

  27. (27)

    Y.-L. Yang and L. J. Kaufman, Biophys. J., 96, 1566 (2009).

  28. (28)

    R. Ravichandran, M. M. Islam, E. I. Alarcon, A. Samanta, S. Wang, P. Lundström, J. Hilborn, M. Griffith, and J. Phopase, J. Mater. Chem. B, 4, 318 (2016).

  29. (29)

    Y. Feng, G. Melacini, J. P. Taulane, and M. Goodman, J. Am. Chem. Soc., 118, 10351 (1996).

  30. (30)

    H. Tian, Y. Chen, C. Ding, and G. Li, Carbohydr. Polym., 89, 542 (2012).

  31. (31)

    H. Dawes, S. Boyes, J. Keene, and D. Heatherbell, Am. J. Enol. Viticult., 45, 319 (1994).

  32. (32)

    D. Pelegrine and C. Gasparetto, LWT-Food Sci. Technol., 38, 77 (2005).

  33. (33)

    G. I. Makhatadze and P. L. Privalov, Adv. Protein Chem., 47, 307 (1995).

  34. (34)

    A. Finch and D. A. Ledward, BBA-Protein Struct., 278, 433 (1972).

  35. (35)

    J. Zhang, Y. Sun, Y. Zhao, B. Wei, C. Xu, L. He, C. L. P. Oliveria, and H. Wang, Soft Matter, 13, 9220 (2017).

  36. (36)

    J. M. Cassel, Biopolymers, 4, 989 (1966).

  37. (37)

    A. Cooper, Biochem. J., 118, 355 (1970).

  38. (38)

    S. Leikin, D. C. Rau, and V. A. Parsegian, Nat. Struct. Biol., 2, 205 (1995).

  39. (39)

    Z. Yu, Q. Xu, C. Dong, S. S. Lee, L. Gao, Y. Li, M. D’Ortenzio, and J. Wu, Curr. Pharm. Des., 21, 4342 (2015).

Download references

Author information

Correspondence to Juntao Zhang or Haibo Wang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Acknowledgments This study was financially supported by the National Natural Science Foundation of China (No. 21706201, No. 21676208, No. 21376183), Wuhan Application Basic Frontier Project (No. 2019020701011478), Wuhan Morning Light Plan of Youth Science and Technology (No. 2017050304010326), Hubei Provincial Natural Science Foundation of China (No. 2018CFA030, 2019CFB252), and Innovation Team Program of Hubei province, China (No. T201208).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Shu, F., Pan, L. et al. Impact of Grafting Density on the Self-Assembly and Hydrophilicity of Succinylated Collagen. Macromol. Res. (2020). https://doi.org/10.1007/s13233-020-8077-1

Download citation

Keywords

  • collagen
  • succinylation
  • self-assembly
  • hydrophilicity