Advertisement

Fabrication of Metallochromic Dye Functionalized Hydrogel for On-site, Fast, User-friendly Metal-ion Sensing Kit

  • Kyueun Park
  • Youngjin Kim
  • Kyung Jin LeeEmail author
Article
  • 7 Downloads

Abstract

Colorimetric sensor has been prepared for easy and simple detection of metal ion in aqueous solution. Metallochromic dyes which change color when combining certain metal ion are introduced to prepare colorimetric sensors. In order to introduce dye into hydrogel, metallochromic dyes are modified to acrylic monomer using esterification reaction. Dye functionalized hydrogels are prepared in the forms of bulk and porous using dye functionalized monomer and processed to manufacture user-friendly sensing kit. Porous hydrogel shows faster detecting time than that of bulk. The color change of sensing kit could be confirmed according to concentration of each metal and be tabulated using sensing kit of porous type. Fast and efficiently metal ion detecting ability is expected using the proper data-process of colors.

Keywords

hydrogel metal ion detection colorimetric sensor functional polymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

13233_2020_8074_MOESM1_ESM.pdf (1.5 mb)
Supplementary material, approximately 1.52 MB.

References

  1. (1).
    M. L. Yin, Z. H. Li, Z. Liu, X. J. Yang, and J. S. Ren, ACS Appl. Mater. Inter., 4, 431 (2012).CrossRefGoogle Scholar
  2. (2).
    C. Wang, S. Y. Tao, W. Wei, C. G. Meng, F. Y. Liu, and M. Han, J. Mater. Chem., 20, 4635 (2010).CrossRefGoogle Scholar
  3. (3).
    N. Dave, M. Y. Chan, P. J. J. Huang, B. D. Smith, and J. W. Liu, J. Am. Chem. Soc., 132, 12668 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  4. (4).
    S. Y. Ding, M. Dong, Y. W. Wang, Y. T. Chen, H. Z. Wang, C. Y. Su, and W. Wang, J. Am. Chem. Soc., 138, 3031 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  5. (5).
    M. R. Awual, T. Yaita, S. A. El-Safty, H. Shiwaku, S. Suzuki, and Y. Okamoto, Chem. Eng. J., 221, 322 (2013).CrossRefGoogle Scholar
  6. (6).
    T. W. Sung and Y. L. Lo, Sens. Actuat. B-Chem., 165, 119 (2012).CrossRefGoogle Scholar
  7. (7).
    T. T. B. Quyen, W. N. Su, C. H. Chen, J. Rick, J. Y. Liu, and B. J. Hwang, J. Mater. Chem. B, 2, 5550 (2014).CrossRefGoogle Scholar
  8. (8).
    Y. Ding, Y. Fan, Y. F. Zhang, Y. H. He, S. Q. Sun, and H. Ma, RSC Adv., 5, 90659 (2015).CrossRefGoogle Scholar
  9. (9).
    W. T. Tsai, M. H. Nguyen, J. R. Lai, H. B. Nguyen, M. C. Lee, and F. G. Tseng, Sens. Actuat. B-Chem., 265, 75 (2018).CrossRefGoogle Scholar
  10. (10).
    V. V. Kumar, T. Raman, and S. P. Anthony, New J. Chem., 41, 15157 (2017).CrossRefGoogle Scholar
  11. (11).
    B. L. Rivas, B. Quilodran, and E. Quiroz, J. Appl. Polym. Sci., 99, 697 (2006).CrossRefGoogle Scholar
  12. (12).
    A. G. Latha, B. K. George, K. G. Kannan, and K. N. Ninan, J. Appl. Polym. Sci., 43, 1159 (1991).CrossRefGoogle Scholar
  13. (13).
    D. Yun, E. Cho, S. D. Dindulkar, and S. Jung, Macromol. Mater. Eng., 109, 2808 (2008).Google Scholar
  14. (14).
    K. Abbas, H. Znad, and M. R. Awual, Chem. Eng. J., 334, 432 (2018).CrossRefGoogle Scholar
  15. (15).
    M. R. Awual, M. Khraisheh, N. H. Alharthi, M. Luqman, A. Islam, M. R. Karim, M. M. Rahman, and M. A. Khaleque, Chem. Eng. J., 343, 118 (2018).CrossRefGoogle Scholar
  16. (16).
    M. R. Awual, N. H. Alharthi, M. M. Hasan, M. R. Karim, A. Islam, H. Znad, M. A. Hossain, M. E. Halim, M. M. Rahman, and M. A. Khaleque, Chem. Eng. J., 324, 130 (2017).CrossRefGoogle Scholar
  17. (17).
    M. R. Awual, Chem. Eng. J., 307, 85 (2017).CrossRefGoogle Scholar
  18. (18).
    Z. Q. Zhu, Y. Y. Su, J. Li, D. Li, J. Zhang, S. P. Song, Y. Zhao, G. X. Li, and C. H. Fan, Anal. Chem., 81, 7660 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  19. (19).
    Y. Wei, C. Gao, F. L. Meng, H. H. Li, L. Wang, J. H. Liu, and X. J. Huang, J. Phys. Chem. C, 116, 1034 (2012).CrossRefGoogle Scholar
  20. (20).
    Z. Z. Lin, X. H. Li, and H. B. Kraatz, Anal. Chem., 83, 6896 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  21. (21).
    H. N. Kim, W. X. Ren, J. S. Kim, and J. Yoon, Chem. Soc. Rev., 41, 3210 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  22. (22).
    L. H. Yuen, R. M. Franzini, S. S. Tan, and E. T. Kool, J. Am. Chem. Soc., 136, 14576 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  23. (23).
    K. Zhang, J. K. Guo, J. J. Nie, B. Y. Du, and D. J. Xu, Sens. Actuat. B-Chem., 190, 279 (2014).CrossRefGoogle Scholar
  24. (24).
    C. Queiros, A. M. G. Silva, S. C. Lopes, G. Ivanova, P. Gameiro, and M. Rangel, Dyes Pigments, 93, 1447 (2012).CrossRefGoogle Scholar
  25. (25).
    T. Gunnlaugsson, J. P. Leonard, and N. S. Murray, Org. Lett., 6, 1557 (2004).PubMedCrossRefPubMedCentralGoogle Scholar
  26. (26).
    Q. Zhao, F. Y. Li, S. J. Liu, M. X. Yu, Z. Q. Liu, T. Yi, and C. H. Huang, Inorg. Chem., 47, 9256 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  27. (27).
    J. Liu, K. K. Yee, K. K. W. Lo, K. Y. Zhang, W. P. To, C. M. Che, and Z. T. Xu, J. Am. Chem. Soc., 136, 2818 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  28. (28).
    H. Senff and W. Richtering, J. Chem. Phys., 111, 1705 (1999).CrossRefGoogle Scholar
  29. (29).
    E. M. Ahmed, J. Adv. Res., 6, 105 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  30. (30).
    Y. Helwa, N. Dave, R. Froidevaux, A. Samadi, and J. W. Liu, ACS Appl. Mater. Inter., 4, 2228 (2012).CrossRefGoogle Scholar
  31. (31).
    A. P. Esser-Kahn, A. T. Iavarone, and M. B. Francis, J. Am. Chem. Soc., 130, 15820 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  32. (32).
    B. F. Ye, Y. J. Zhao, Y. Cheng, T. T. Li, Z. Y. Xie, X. W. Zhao, and Z. Z. Gu, Nanoscale, 4, 5998 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  33. (33).
    K. A. McCall and C. A. Fierke, Anal. Biochem., 284, 307 (2000).PubMedCrossRefPubMedCentralGoogle Scholar
  34. (34).
    J. Li, X. Yuan, Y. N. Wu, X. L. Ma, F. T. Li, B. R. Zhang, Y. Wang, Z. F. Lei, and Z. Y. Zhang, Chem. Eng. J., 350, 637 (2018).CrossRefGoogle Scholar
  35. (35).
    S. H. Cha, J. Bae, and K. J. Lee, Polym. Eng. Sci., 55, 1906 (2015).CrossRefGoogle Scholar
  36. (36).
    H. Kim, M. Gil, S. H. Cha, and K. J. Lee, Macromol. Res., 26, 477 (2018).CrossRefGoogle Scholar
  37. (37).
    Y. Kim, I. Kim, T. S. Lee, E. Lee, and K. J. Lee, J. Ind. Eng. Chem., 60, 465 (2018).CrossRefGoogle Scholar
  38. (38).
    J. H. Holtz and S. A. Asher, Nature, 389, 829 (1997).PubMedCrossRefPubMedCentralGoogle Scholar
  39. (39).
    Y. Hu, X. Y. Gu, Y. Yang, J. Huang, M. Hu, W. K. Chen, Z. Tong, and C. Y. Wang, ACS Appl. Mater. Inter., 6, 17166 (2014).CrossRefGoogle Scholar
  40. (40).
    E. Engstrom, I. Jonebring, and B. Karlberg, Anal. Chim. Acta, 371, 227 (2018).CrossRefGoogle Scholar
  41. (41).
    R. Abdeen and H. O. BadrEldin, Am. J. Appl. Polym. Sci., 3, 6 (2015).Google Scholar
  42. (42).
    X. J. Zhou, J. J. Nie, and B. Y. Du, ACS Appl. Mater. Inter., 7, 21966 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2020

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Applied Chemistry, College of EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations