Ultrahigh Energy Storage Capacitance and High Breakdown Strength in Biaxially Oriented Poly(vinylidene fluoride) Using a High-Electric-Induced Technique

  • 11 Accesses


The development of high dielectric materials with high energy densities is a crucial research domain in the modern microelectronics and power systems. The objective of this work was to develop the highly ordered crystal orientations and large ferroelectric crystalline β/γ-phases in the biaxially oriented poly(vinylidene fluoride) (BOPVDF). Importantly, a high discharged energy density and high dielectric constant was achieved by using a high-electric-induced technique. A suitable poling electric field was applied to the BOPVDF films in order to enhance the breakdown strength. Remarkably, the BOPVDF film poled at the electric field of 113 MV m−1 achieved an unprecedented discharged energy density of 25.4 J cm−3 at an ultra-high electric field of 550 MV m−1, which is by far the highest value ever achieved in flexible polymer-based capacitor films. Comparatively, the unpoled BOPVDF and commercial biaxially oriented polypropylene (BOPP) exhibited only a discharged energy density of 7.9 J cm−3 and 1.2 J cm−3, respectively. This systematic study provides a new design paradigm to exploit PVDF-based dielectric polymers for capacitor applications.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. (1)

    B. J. Chu, X. Zhou, K. L. Ren, B. Neese, M. R. Lin, Q. Wang, F. Bauer, and Q. M. Zhang, Science, 313, 334 (2006).

  2. (2)

    Y. Xie, Y. Yu, Y. Feng, W. Jiang, and Z. Zhang, ACS Appl. Mater. Interfaces, 9, 2995 (2017).

  3. (3)

    X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin, and C. W. Nan, Adv. Mater., 28, 2055 (2016).

  4. (4)

    F. Guan, J. Pan, J. Wang, Q. Wang, and L. Zhu, Macromolecules, 43, 384 (2010).

  5. (5)

    G. Yunlong, Y. Gui, and L. Yunqi, Adv. Mater., 22, 4427 (2010).

  6. (6)

    D. Chong-an, Z. Fengjiao, and Z. Daoben, Adv. Mater., 25, 313 (2013).

  7. (7)

    X.-Z. Chen, Q. Li, X. Chen, X. Guo, H.-X. Ge, Y. Liu, and Q.-D. Shen, Adv. Funct Mater., 23, 3124 (2013).

  8. (8)

    Y. Chen, X. Chen, H. Lu, L. Zhang, Y. Yang, and Q.-D. Shen, Polymer, 143, 281 (2018).

  9. (9)

    H. Tang and H. A. Sodano, Nano Lett., 13, 1373 (2013).

  10. (10)

    M. Rabuffi and G. Picci, IEEE T. Plasma. Sci, 30, 1939 (2002).

  11. (11)

    L. A Fredin, Z. Li, M. A. Ratner, M. T. Lanagan, and T. J. Marks, Adv. Mater., 24, 5946 (2012).

  12. (12)

    W. Xu, G. Yang, L. Jin, J. Liu, Y. Zhang, Z. Zhang, and Z. Jiang, ACS Appl. Mater. Interfaces, 10, 11233 (2018).

  13. (13)

    A. J. Lovinger, Science, 220, 1115 (1983).

  14. (14)

    A. J. Lovinger, D. Davis, R. Cais, and J. Kometani, Polymer, 28, 617 (1987).

  15. (15)

    F. B. Calleja, A. G. Arche, T. Ezquerra, C. Santa Cruz, F. Batallan, B. Frick, and E. L. Cabarcos, in Structure in Polymers with Special Properties, Springer, 1993, pp 1–48.

  16. (16)

    G. R. Li, N. Kagami, and H. Ohigashi,J. Appl Phys., 72, 1056 (1992).

  17. (17)

    Q. M. Zhang, Science, 280, 2101 (1998).

  18. (18)

    Q. M. Zhang, Z.-Y. Cheng, and V. Bharti, Appl Phys. A, 70, 307 (2000).

  19. (19)

    Z. Zhang and T. C. M. Chung, Macromolecules,40, 783 (2007).

  20. (20)

    X. Chenyang, L. Jingye, Y. Chunming, and L. Yongjin, Macromol. Rapid Commun., 37, 1559 (2016).

  21. (21)

    F. Guan, L. Yang, J. Wang, B. Guan, K. Han, Q. Wang, and L. Zhu, Adv. Funct Mater., 21, 3176 (2011).

  22. (22)

    C. Yingxin, T. Xin, S. Jie, W. Xiaoliang, H. Wenbing, and S. Qun-Dong, J. Polym. Sci. Part B: Polym. Phys., 54, 1160 (2016).

  23. (23)

    B. Mohammadi, A. A. Yousefi, and S. M. Bellah, Polym. Test., 26, 42 (2007).

  24. (24)

    L. Yang, J. Ho, E. Allahyarov, R. Mu, and L. Zhu, ACS Appl Mater. Interfaces, 7, 19894 (2015).

  25. (25)

    H. Xingyi and J. Pingkai, Adv. Mater., 27, 546 (2015).

  26. (26)

    Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li, and T. Tanaka, ACS Appl. Mater. Interfaces, 3, 4396 (2011).

  27. (27)

    C. Xing, L. Zhao, J. You, W. Dong, X. Cao, and Y. Li,J. Phys. Chem. B, 116, 8312 (2012).

  28. (28)

    L. Feihua, L. Qi, C. Jin, L. Zeyu, Y. Guang, L. Yang, D. Lijie, X. Chuanxi, W. Hong, and W. Qing, Adv. Funct. Mater., 27, 1606292 (2017).

  29. (29)

    Y. X. Chen, Z. X. Cheng, and Q. D. Shen, IEEE Trans. Dielectr. Electr. Insul., 24, 682 (2017).

  30. (30)

    Q. Li, K. Han, M. R. Gadinski, G. Z. Zhang, and Q. Wang, Adv. Mater., 26, 6244 (2014).

  31. (31)

    Q. Meng, W. Li, Y. Zheng, and Z. Zhang, J. Appl Polym. Sci., 116, 2674 (2010).

  32. (32)

    R. J. Klein, J. Runt, and Q.-M. Zhang, Macromolecules, 36, 7220 (2003).

  33. (33)

    Z. Zhang and T. C. M. Chung, Macromolecules, 40, 9391 (2007).

  34. (34)

    L. L. Sun, B. Li, Y. Zhao, G. Mitchell, and W. H. Zhong, Nanotechnology, 21, 305702 (2010).

  35. (35)

    B. Hahn, J. Wendorff, and D. Y. Yoon, Macromolecules, 18, 718 (1985).

  36. (36)

    X. Zhou, X. Zhao, Z. Suo, C. Zou, J. Runt, S. Liu, S. Zhang, and Q. M. Zhang, Appl. Phys. Lett, 94, 162901 (2009).

  37. (37)

    X. Zhou, B. Chu, B. Neese, M. Lin, Q. M. Zhang, IEEE Trans. Dielectr. Electr Insul, 5, 1133 (2007).

  38. (38)

    Z. Zhang, Q. Meng, and T. C. Mike Chung, Polymer, 50, 707 (2009).

  39. (39)

    J. Li, X. Hu, G. Gao, S. Ding, H. Li, L. Yang, and Z. Zhang, J. Mater. Chem. C, 1, 1111 (2013).

  40. (40)

    X. Ren, N. Meng, H. Yan, E. Bilotti, and M. J. Reece, Polymer, 168, 246 (2019).

  41. (41)

    L. Wang, H. Luo, X. Zhou, X. Yuan, K. Zhou, and D. Zhang, Compos. Part A, 117, 369 (2019).

  42. (42)

    H. Zhu, Z. Liu, and F. Wang, J. Mater. Sci., 52, 5048 (2017).

  43. (43)

    Y. F. Wang, L. X. Wang, Q. B. Yuan, J. Chen, Y. J. Niu, X. W. Xu, Y. T. Cheng, B. Yao, Q. Wang, and H. Wang, Nano Energy, 44, 364 (2018).

  44. (44)

    Y. X. Chen, Y. F. Yue, J. Liu, J. Shu, A. P. Liu, B. J. Chu, M. H. Xu, W. Z. Xu, T. Chen, J. Zhang, and Q. D. Shen, Phys. Chem. Chem. Phys., 21, 20661 (2019).

  45. (45)

    Y. X. Chen, L. Zhang, J. H. Liu, X. L. Lin, W. Z. Xu, Y. F. Yue, and Q. D. Shen, Carbon, 144, 15 (2019).

  46. (46)

    G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M. R. Gadinski, M. A. Haque, Q. Zhang, and Q. Wang, Adv. Mater., 27, 1450 (2015).

Download references

Author information

Correspondence to Yingxin Chen.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by National Natural Science Foundation of China (Grant No.51703044), the School Science Starting Foundation of Hangzhou Dianzi University (Grant No. KYS205617016), the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University (No. JDGD-201804), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY18E020005).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Du, J., Yu, C. et al. Ultrahigh Energy Storage Capacitance and High Breakdown Strength in Biaxially Oriented Poly(vinylidene fluoride) Using a High-Electric-Induced Technique. Macromol. Res. (2020) doi:10.1007/s13233-020-8073-5

Download citation


  • biaxially oriented poly(vinylidene fluoride)
  • high electric poling
  • high power-density capacitor
  • dielectric constant
  • ferroelectric crystalline phase