Preparation of Non-Planar-Ring Epoxy Thermosets Combining Ultra-Strong Shape Memory Effects and High Performance

  • Qiong Li
  • Songqi MaEmail author
  • Jingjing Wei
  • Sheng Wang
  • Xiwei Xu
  • Kaifeng Huang
  • Binbo Wang
  • Wangchao Yuan
  • Jin Zhu


Non-planar-ring epoxies together with non-planar-ring hardeners could achieve thermosets combining ultra-high shape recovery speed and excellent thermal properties. High shape recovery speed reflected high efficiency, and could decrease the energy consumption and the harmful effect of external stimuli on the materials, while it often conflicts with the thermal properties of shape memory polymers. In this paper, for the first time, epoxy resins with the super-short shape recovery time within 3 s were developed from non-planar-ring epoxies and hardeners, and their glass transition temperature (Tg) were ∼127 °C much higher than their benzene ring analogues. The effects of non-planar-ring structures of the epoxies and hardeners on the curing behavior, thermal properties as well as the shape memory properties of the thermosets were systematically investigated; the structure-property relationships were disclosed with the help of computational simulation of structure parameters and ESP maps. The faster shape recovery speed of the non-planar-ring epoxy thermosets is from their higher molecular mobility contributed by the conformational transition of non-planar-rings as well as their higher recovery force compared with benzene ring analogs. Their higher Tgs are from the steric hindrance by the larger molecular volume of the non-planar-rings than benzene ring. This work will provide an effective method to produce shape memory polymers with excellent shape memory effects and high performance.


epoxy resins shape memory polymers structure-property relationships non-planar ring computational simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material


  1. (1).
    M. D. Hager, S. Bode, C. Weber, and U. S. Schubert, Prog. Polym. Sci., 49–50, 3 (2015).CrossRefGoogle Scholar
  2. (2).
    J. Hu, Y. Zhu, H. Huang, and J. Lu, Prog. Polym. Sci., 37, 1720 (2012).CrossRefGoogle Scholar
  3. (3).
    Q. Zhao, H. J. Qi, and T. Xie, Prog. Polym. Sci., 49-50, 79 (2015).CrossRefGoogle Scholar
  4. (4).
    C. Liu, H. Qin, and P. T. Mather, J. Mater. Chem., 17, 1543 (2007).CrossRefGoogle Scholar
  5. (5).
    L. Yang, G. Zhang, N. Zheng, Q. Zhao, and T. Xie, Angew. Chem. Int. Ed., 56, 12599 (2017).CrossRefGoogle Scholar
  6. (6).
    W. Wang, D. Shen, X. Li, Y. Yao, J. Lin, A. Wang, J. Yu, Z. L. Wang, S. W. Hong, Z. Lin, and S. Lin, Angew. Chem. Int. Ed. Engl., 57, 2139 (2018).PubMedCrossRefGoogle Scholar
  7. (7).
    X. J. Han, Z. Q. Dong, M. M. Fan, Y. Liu, J. H. Li, Y. F. Wang, Q. J. Yuan, B. J. Li, and S. Zhang, Macromol. Rapid Commun., 33, 1055 (2012).PubMedCrossRefGoogle Scholar
  8. (8).
    J. Deng, Z. Chang, T. Zhao, X. Ding, J. Sun, and J. Z. Liu, J. Am. Chem. Soc., 138, 4772 (2016).PubMedCrossRefGoogle Scholar
  9. (9).
    P. Lázpita, M. Sasmaz, J. M. Barandiarán, and V. A. Chernenko, Acta Mater., 155, 95 (2018).CrossRefGoogle Scholar
  10. (10).
    Z. Wang, Z. Ruan, Z. Liu, Y. Wang, Z. Tang, H. Li, M. Zhu, T. F. Hung, J. Liu, and Z. Shi, J. Mater. Chem. A, 6, 8549 (2018).CrossRefGoogle Scholar
  11. (11).
    C. Li, J. Adamcik, and R. Mezzenga, Nat. Nanotechnol., 7, 421 (2012).PubMedCrossRefGoogle Scholar
  12. (12).
    J. Leng, X. Lan, Y. Liu, and S. Du, Prog. Mater Sci., 56, 1077 (2011).CrossRefGoogle Scholar
  13. (13).
    M. Behl, M. Y. Razzaq, and A. Lendlein, Adv. Mater., 22, 3388 (2010).PubMedCrossRefGoogle Scholar
  14. (14).
    K. S. Santhosh Kumar, R. Biju, and C. P. Reghunadhan Nair, React. Funct. Polym., 73, 421 (2013).CrossRefGoogle Scholar
  15. (15).
    N. Zheng, G. Fang, Z. Cao, Q. Zhao, and T. Xie, Polym. Chem., 6, 3046 (2015).CrossRefGoogle Scholar
  16. (16).
    L. P. Chen, A. F. Yee, J. M. Goetz, and J. Schaefer, Macromolecules, 31, 5371 (1998).CrossRefGoogle Scholar
  17. (17).
    A. B. Leonardi, L. A. Fasce, I. A. Zucchi, C. E. Hoppe, E. R. Soulé, C. J. Pérez, and R. J. J. Williams, Eur. Polym. J., 47, 362 (2011).CrossRefGoogle Scholar
  18. (18).
    M. Fan, J. Liu, X. Li, J. Zhang, and J. Cheng, J. Polym. Res., 21, 376 (2014).CrossRefGoogle Scholar
  19. (19).
    T. Xie and I. A. Rousseau, Polymer, 50, 1852 (2009).CrossRefGoogle Scholar
  20. (20).
    Y. Liu, H. Sun, H. Tan, and X. Du, J. Appl. Polym. Sci., 127, 3152 (2013).CrossRefGoogle Scholar
  21. (21).
    K. Wei, G. Zhu, Y. Tang, and L. Niu, J. Polym. Res., 20, 123 (2013).CrossRefGoogle Scholar
  22. (22).
    Z. Ma, Y. Wang, J. Zhu, J. Yu, and Z. Hu, J. Polym. Sci., Part A: Polym. Chem., 55, 1790 (2017).CrossRefGoogle Scholar
  23. (23).
    C. Li, J. Dai, X. Liu, Y. Jiang, S. Ma, and J. Zhu, Macromol. Chem. Phys., 217, 1439 (2016).CrossRefGoogle Scholar
  24. (24).
    S. Rimdusit, M. Lohwerathama, K. Hemvichian, P. Kasemsiri, and I. Dueramae, Smart Mater. Struct., 22, 075033 (2013).CrossRefGoogle Scholar
  25. (25).
    T. Li, X. Liu, Y. Jiang, S. Ma, and J. Zhu, Iran. Polym. J., 25, 957 (2016).CrossRefGoogle Scholar
  26. (26).
    L. P. Chen, A. F. Yee, and E. J. Moskala, Macromolecules, 32, 5944 (1999).CrossRefGoogle Scholar
  27. (27).
    J. W. Liu and A. F. Yee, Macromolecules, 31, 7865 (1998).CrossRefGoogle Scholar
  28. (28).
    X. Li and A. F. Yee, Macromolecules, 37, 7231 (2004).CrossRefGoogle Scholar
  29. (29).
    S. Ma, D. C. Webster, and F. Jabeen, Macromolecules, 49, 3780 (2016).CrossRefGoogle Scholar
  30. (30).
    J. Karger-Kocsis, O. Gryshchuk, and N. Jost, J. Appl. Polym. Sci., 88, 2124 (2003).CrossRefGoogle Scholar
  31. (31).
    L. Zhang, M. Huang, R. Yu, J. Huang, X. Dong, R. Zhang, and J. Zhu, J. Mater. Chem. A, 2, 11490 (2014).CrossRefGoogle Scholar
  32. (32).
    J. Cheng, P. Zhang, T. Liu, and J. Zhang, Polymer, 78, 212 (2015).CrossRefGoogle Scholar
  33. (33).
    T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett., 393, 51 (2004).CrossRefGoogle Scholar
  34. (34).
    N. Latelli, N. Ouddai, M. Arotçaréna, P. Chaumont, P. Mignon, and H. Chermette, Comput. Theor. Chem., 1027, 39 (2014).CrossRefGoogle Scholar
  35. (35).
    D. F. Parsons and B. W. Ninham, J. Phys. Chem. A, 113, 1141 (2009).PubMedCrossRefGoogle Scholar
  36. (36).
    S. J. Blanksby and G. B. Ellison, Acc. Chem. Res., 36, 255 (2003).PubMedCrossRefGoogle Scholar
  37. (37).
    H. L. van de Wouw, E. C. Awuyah, J. I. Baris, and R. S. Klausen, Macromolecules, 51, 6359 (2018).CrossRefGoogle Scholar
  38. (38).
    P. Sjoberg and P. Politzer, J. Phys. Chem., 94, 3959 (1990).CrossRefGoogle Scholar
  39. (39).
    D. Pegu, J. Deb, S. K. Saha, M. K. Paul, and U. Sarkar, J. Mol. Struct., 1160, 167 (2018).CrossRefGoogle Scholar
  40. (40).
    Y.-D. Wu, C.-L. Wong, K. W. K. Chan, G.-Z. Ji, and X.-K. Jiang, J. Org. Chem., 61, 746 (1996).PubMedCrossRefGoogle Scholar
  41. (41).
    M. Szwarc, J. Chem. Phys., 16, 128 (1948).CrossRefGoogle Scholar
  42. (42).
    D. Roşu, C. Caşcaval, F. Mustatǎ, and C. Ciobanu, Thermochim. Acta, 383, 119 (2002).CrossRefGoogle Scholar
  43. (43).
    D. B. Guan, Z. Y. Cai, X. J. Zhai, W. G. Yao, S. J. Wang, H. An, and X. M. Qiu, Adv. Mater. Res., 652-654, 121 (2013).CrossRefGoogle Scholar
  44. (44).
    A. Patel, A. Maiorana, L. Yue, R. A. Gross, and I. Manas-Zloczower, Macromolecules, 49, 5315 (2016).CrossRefGoogle Scholar
  45. (45).
    X. Shen, X. Liu, J. Dai, Y. Liu, Y. Zhang, and J. Zhu, Ind. Eng. Chem. Res., 56, 10929 (2017).CrossRefGoogle Scholar
  46. (46).
    S. Ma and D. C. Webster, Macromolecules, 48, 7127 (2015).CrossRefGoogle Scholar
  47. (47).
    S. Wang, S. Ma, C. Xu, Y. Liu, J. Dai, Z. Wang, X. Liu, J. Chen, X. Shen, J. Wei, and J. Zhu, Macromolecules, 50, 1892 (2017).CrossRefGoogle Scholar
  48. (48).
    P. Li, S. Ma, J. Dai, X. Liu, Y. Jiang, S. Wang, J. Wei, J. Chen, and J. Zhu, ACS Sustain. Chem. Eng., 5, 1228 (2017).CrossRefGoogle Scholar
  49. (49).
    W. J. Yoon, S. Y. Hwang, J. M. Koo, Y. J. Lee, S. U. Lee, and S. S. Im, Macromolecules, 46, 7219 (2013).CrossRefGoogle Scholar
  50. (50).
    X. Xiong, L. Zhou, R. Ren, X. Ma, and P. Chen, Polymer, 140, 326 (2018).CrossRefGoogle Scholar
  51. (51).
    Y.-C. Chiu, I. C. Chou, W.-C. Tseng, and C.-C. M. Ma, Polym. Degrad. Stab., 93, 668 (2008).CrossRefGoogle Scholar
  52. (52).
    S. Ma, X. Liu, L. Fan, Y. Jiang, L. Cao, Z. Tang, and J. Zhu, ChemSusChem, 7, 555 (2014).PubMedCrossRefGoogle Scholar
  53. (53).
    S. Ma, W. Liu, C. Hu, Z. Wang, and C. Tang, Macromol. Res., 18, 392 (2010).CrossRefGoogle Scholar
  54. (54).
    W. Liu, S. Ma, Z. Wang, C. Hu, and C. Tang, Macromol. Res., 18, 853 (2010).CrossRefGoogle Scholar
  55. (55).
    Y. Liu, C. Han, H. Tan, and X. Du, Mater. Sci. Eng. A, 527, 2510 (2010).CrossRefGoogle Scholar
  56. (56).
    K. Wei, B. Ma, Y. Liu, H. Wang, and N. Li, J. Mater. Res., 30, 2179 (2015).CrossRefGoogle Scholar
  57. (57).
    J. Liu and A. F. Yee, Macromolecules, 31, 7865 (1998).CrossRefGoogle Scholar
  58. (58).
    C. C. Hornat, Y. Yang, and M. W. Urban, Adv. Mater., 29, 1603334 (2017).CrossRefGoogle Scholar
  59. (59).
    P. J. Flory, Polymer, 20, 1317 (1985).CrossRefGoogle Scholar
  60. (60).
    G. Marrucci, Macromolecules, 14, 434 (1981).CrossRefGoogle Scholar
  61. (61).
    L. Zhang, S. S. Shams, Y. Wei, X. Liu, S. Ma, R. Zhang, and J. Zhu, J. Mater. Chem. A, 2, 20010 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Qiong Li
    • 1
    • 2
  • Songqi Ma
    • 1
    Email author
  • Jingjing Wei
    • 1
  • Sheng Wang
    • 1
    • 2
  • Xiwei Xu
    • 1
  • Kaifeng Huang
    • 1
  • Binbo Wang
    • 1
  • Wangchao Yuan
    • 1
    • 2
  • Jin Zhu
    • 1
  1. 1.Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations