Advertisement

Design and Construction of Polyaniline/Reduced Graphene Oxide Three-Dimensional Dendritic Architecture on Interdigital Electrode for Sensitive Detection Nitrite

  • Li LiEmail author
  • Huan Liu
  • Boya Li
  • Yanan Guo
  • Liming Qing
  • Baohui Wang
Article
  • 5 Downloads

Abstract

The polyaniline/reduced graphene oxide (PANI/RGO) modified interdigital electrode (IDE) has been successfully fabricated by in situ electrochemical reduction and electrochemical polymerization through cyclic voltammetry. The morphology and topography of PANI/RGO characterized by SEM and AFM display intercross-linked dendritic structure in three dimensions, and it is favorable for the detection of nitrite due to its large surface area, which can provide the large electrocatalytic active surface and various diffusion paths for nitrite. Herein, the obtained PANI/RGO/IDE was employed for the electrochemical monitoring platform of nitrite for the first time and the electrochemical performance of the as-developed sensor was investigated via cyclic voltammetry and chronoamperometry. At the optimum conditions, the PANI/RGO/IDE has a linear response in the range from 0.4 to 183.7 mM with a sensitivity of 457.4 μA mM−1 cm−2 and a detection limit of 0.1 μM. Moreover, the obtained PANI/RGO/IDE with excellent long-term stability and reproducibility also can be employed for practical application for the determination of nitrite in tap water, the results show that the recovery rate is desirable. It is expected that IDE can be employed as the substrate electrode decorated with various materials to construct high-performance electrochemical sensors.

Keywords

polyaniline reduced graphene oxide interdigital electrode nitrite electrochemical sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. (1).
    Y. Mao, Y. Bao, D. X. Han, and B. Zhao, Chinese J. Anal. Chem, 46, 147 (2018).CrossRefGoogle Scholar
  2. (2).
    S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson, and S. J. Kim, Appl. Catal. B: Environ., 148, 22 (2014).CrossRefGoogle Scholar
  3. (3).
    K. Nakamura, Y. Yoshida, I. Mikami, and T. Okuhara, Appl. Catal. B: Environ., 65, 31 (2006).CrossRefGoogle Scholar
  4. (4).
    M. Bru, M. I. Burguete, F. Galindo, S. V. Luis, M. J. Mann, and L. Vigara, Tetrahedron Lett., 47, 1787 (2006).CrossRefGoogle Scholar
  5. (5).
    P. Mikuška and Z. Večeřa, Anal. Chim. Acta, 495, 225 (2003).CrossRefGoogle Scholar
  6. (6).
    X. Wang, E. Adams, and A. Van Schepdael, Talanta, 97, 142 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  7. (7).
    H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu, and Y. Komatsu, J. Chromatogr. A, 1216, 3163 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  8. (8).
    S. Yang, B. Xia, X. Zeng, S. Luo, W. Wei, and X. Liu, Anal. Chim. Acta, 667, 57 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  9. (9).
    A. S. Adekunle, J. Pillay, and K. I. Ozoemena, Electrochim. Acta, 55, 4319 (2010).CrossRefGoogle Scholar
  10. (10).
    A. Afkhami, T. Madrakian, H. Ghaedi, and H. Khanmohammadi, Electrochim. Acta, 66, 255 (2012).CrossRefGoogle Scholar
  11. (11).
    J. J. Feng, P. P. Zhang, A. J. Wang, Y. Zhang, W. J. Dong, and J. R. Chen, J. Colloid Interface Sci., 359, 1 (2011).PubMedCrossRefGoogle Scholar
  12. (12).
    S. Jiao, J. Jin, and L. Wang, Sens. Actuators B: Chem., 208, 36 (2015).CrossRefGoogle Scholar
  13. (13).
    L. M. Shi, J. X. Pan, B. Zhou, and X. Jiang, J. Mater. Chem B, 3, 9340 (2015).CrossRefGoogle Scholar
  14. (14).
    Z. Wang, F. Liao, T. Guo, S. Yang, and C. Zeng, J. Electroanal. Chem., 664, 135 (2012).CrossRefGoogle Scholar
  15. (15).
    Z. Keivani, M. Shabani-Nooshabadi, and H. Karimi-Maleh, J. Colloid Interface Sci., 507, 11 (2017).PubMedCrossRefGoogle Scholar
  16. (16).
    L. Li, D. Liu, K. Wang, H. Mao, and T. You, Sens. Actuators B: Chem., 252, 17 (2017).CrossRefGoogle Scholar
  17. (17).
    M. Parsaei, Z. Asadi, and S. Khodadoust, Sens. Actuators B: Chem., 220, 1131 (2015).CrossRefGoogle Scholar
  18. (18).
    Q. Sheng, D. Liu, and J. Zheng, J. Electroanal. Chem., 796, 9 (2017).CrossRefGoogle Scholar
  19. (19).
    Y. Wan, Y. F. Zheng, H. T. Wan, H. Y. Yin, and X. C. Song, Food Control, 73, 1507 (2017).CrossRefGoogle Scholar
  20. (20).
    H. Wang, P. H. Yang, and H. H. Cai, J Cai, Synth. Met., 162, 326 (2012).CrossRefGoogle Scholar
  21. (21).
    S. Zhang, B. Li, Q. Sheng, and J. Zheng, J Electroanal. Chem., 769, 118 (2016).CrossRefGoogle Scholar
  22. (22).
    R. Ojani, J. B. Raoof, and S. Zamani, Appl. Surf. Sci., 271, 98 (2013).CrossRefGoogle Scholar
  23. (23).
    F. Laghrib, A. Farahi, M. Bakasse, S. Lahrich, and M. A. El Mhammedi, J. Electroanal. Chem., 845, 111 (2019).CrossRefGoogle Scholar
  24. (24).
    F. Laghrib, S. Lahrich, A. Farahi, M. Bakasse, and M. A. El Mhammedi, J Electroanal. Chem., 823, 26 (2018).CrossRefGoogle Scholar
  25. (25).
    F. Laghrib, N. Ajermoun, M. Bakasse, S. Lahrich, and M. A. El Mhammedi, Int J. Biol Macromol., 135, 752 (2019).PubMedCrossRefGoogle Scholar
  26. (26).
    F. Laghrib, A. Farahi, M. Bakasse, S. Lahrich, and M. A. El Mhammedi, Int J. Biol Macromol, 131, 1155 (2019).PubMedCrossRefGoogle Scholar
  27. (27).
    B. R. Kozub, N. V. Rees, and R. G. Compton, Sens. Actuators B: Chem., 143, 539 (2010).CrossRefGoogle Scholar
  28. (28).
    D. Zhang, Y. Fang, Z. Miao, M. Ma, X. Du, S. Takahashi, J. i. Anzai, and Q. Chen, Electrochim. Acta, 107, 656 (2013).CrossRefGoogle Scholar
  29. (29).
    C. A. Caro and F. Bedioui, Electrochim. Acta, 47, 1489 (2002).CrossRefGoogle Scholar
  30. (30).
    R. Yue, Q. Lu, and Y. Zhou, Biosens. Bioelectron, 26, 4436 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  31. (31).
    A. J. Lin, Y. Wen, L. J. Zhang, B. Lu, Y. Li, Y. Z. Jiao, and H. F. Yang, Electrochim. Acta, 56, 1030 (2011).CrossRefGoogle Scholar
  32. (32).
    X. H. Pham, C. A. Li, K. N. Han, B. C. Huynh-Nguyen, T. H. Le, E. Ko, J. H. Kim, and G. H. Seong, Sens. Actuator B: Chem., 193, 815 (2014).CrossRefGoogle Scholar
  33. (33).
    L. Zhou, J. P. Wang, L. Gai, D. J. Li, and Y. B. Li, Sens. Actuators B: Chem., 181, 65 (2013).CrossRefGoogle Scholar
  34. (34).
    A. Afkhami, H. Khoshsafar, H. Bagheri, and T. Madrakian, Sens. Actuators B: Chem., 203, 909 (2014).CrossRefGoogle Scholar
  35. (35).
    C. E. Zou, B. Yang, D. Bin, J. Wang, S. Li, P. Yang, C. Wang, Y. Shiraishi, and Y. Du, J. Colloid Interface Sci., 488, 135 (2017).PubMedCrossRefGoogle Scholar
  36. (36).
    R. Ahmad, T. Mahmoudi, M. S. Ahn, J. Y. Yoo, and Y. B. Hahn, J. Colloid Interface Sci., 516, 67 (2018).PubMedCrossRefGoogle Scholar
  37. (37).
    S. Radhakrishnan, C. Sumathi, A. Umar, S. Jae Kim, J. Wilson, and V. Dharuman, Biosens. Bioelectron., 47, 133 (2013).PubMedCrossRefGoogle Scholar
  38. (38).
    E. Kazimierska, M. R. Smyth, and A. J. Killard, Electrochim. Acta, 54, 7260 (2009).CrossRefGoogle Scholar
  39. (39).
    G. Li, Y. Li, H. Peng, and Y. Qin, Synth Met., 184, 10 (2013).CrossRefGoogle Scholar
  40. (40).
    M. Muchindu, T. Waryo, O. Arotiba, E. Kazimierska, A. Morrin, A. J. Killard, M. R. Smyth, N. Jahed, B. Kgarebe, P. G. L. Baker, and E. I. Iwuoha, Electrochim. Acta, 55, 4274 (2010).CrossRefGoogle Scholar
  41. (41).
    W. Dhaoui, M. Bouzitoun, H. Zarrouk, H. B. Ouada, and A. Pron, Synth. Met., 158, 722 (2008).CrossRefGoogle Scholar
  42. (42).
    W. Dhaoui, H. Zarrouk, and A. Pron, Synth. Met., 157, 564 (2007).CrossRefGoogle Scholar
  43. (43).
    N. Hui, F. Chai, P. Lin, Z. Song, X. Sun, Y. Li, S. Niu, and X. Luo, Electrochim. Acta, 199, 234 (2016).CrossRefGoogle Scholar
  44. (44).
    D. Micić, B. Šljukić, Z. Zujovic, J. Travas-Sejdic, and G. Ćirić-Marjanović, Electrochim. Acta, 120, 147 (2014).CrossRefGoogle Scholar
  45. (45).
    P. H. Salunkhe, Y. S. Patil, V. B. Patil, Y. H. Navale, I. A. Dhole, V. P. Ubale, N. N. Maldar, and A. A. Ghanwat, J. Polym. Res., 25, 147 (2018).CrossRefGoogle Scholar
  46. (46).
    Y. S. Patil, P. H. Salunkhe, Y. H. Navale, V. P. Ubale, V. B. Patil, N. N. Maldar, and A. A. Ghanwat, AIP Conf. Proc., 1989, 020034 (2018).CrossRefGoogle Scholar
  47. (47).
    Y. S. Patil, P. H. Salunkhe, Y. H. Navale, V. B. Patil, V. P. Ubale, and A. A. Ghanwat, Polym. Bull., DOI: 10.1007/s00289-019-02856-2 (2019).Google Scholar
  48. (48).
    S. W. Kang and J. Bae, Macromol. Res., 26, 226 (2018).CrossRefGoogle Scholar
  49. (49).
    L. Li, Y. Guo, C. Zhao, and L. Song, Macromol. Res., 26, 592 (2018).CrossRefGoogle Scholar
  50. (50).
    K. Yamabe and H. Goto, Macromol. Res., 26, 704 (2018).CrossRefGoogle Scholar
  51. (51).
    Y. Zhang, C. Dou, W. Wang, Q. Wang, and N. Feng, Macromol. Res., 24, 663 (2016).CrossRefGoogle Scholar
  52. (52).
    A. I. Gopalan, K. P. Lee, and S. Komathi, Biosens. Bioelectron., 26, 1638 (2010).PubMedCrossRefGoogle Scholar
  53. (53).
    M. Guo, J. Chen, J. Li, B. Tao, and S. Yao, Anal. Chim. Acta, 532, 71 (2005).CrossRefGoogle Scholar
  54. (54).
    Y. Li, H. Peng, G. Li, and K. Chen, Eur. Polym. J., 48, 1406 (2012).CrossRefGoogle Scholar
  55. (55).
    H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, Nanoscale., 2, 2164 (2010).PubMedCrossRefGoogle Scholar
  56. (56).
    H. Yu, G. Xin, X. Ge, C. Bulin, R. Li, R. Xing, and B. Zhang, Compos. Sci. Technol., 154, 76 (2018).CrossRefGoogle Scholar
  57. (57).
    F. P. Du, J. J. Wang, C. Y. Tang, C. P. Tsui, X. L. Xie, and K. F. Yung, Compos. Part B: Eng., 53, 376 (2013).CrossRefGoogle Scholar
  58. (58).
    Z. Huang, L. Li, Y. Wang, C. Zhang, and T. Liu, Compos. Commun., 8, 83 (2018).CrossRefGoogle Scholar
  59. (59).
    A. K. Sarker, and J. D. Hong, Colloids Surf. A: Physicochem. Eng. Asp., 436, 967 (2013).CrossRefGoogle Scholar
  60. (60).
    Q. Zhang, Y. Li, Y. Feng, and W. Feng, Electrochim. Acta, 90, 95 (2013).CrossRefGoogle Scholar
  61. (61).
    L. Wan, B. Wang, S. Wang, X. Wang, Z. Guo, H. Xiong, B. Dong, L. Zhao, H. Lu, Z. Xu, X. Zhang, T. Li, and W. Zhou, React. Funct Polym., 79, 47 (2014).CrossRefGoogle Scholar
  62. (62).
    R. Li, L. Liu, and F. Yang, Chem. Eng. J., 229, 460 (2013).CrossRefGoogle Scholar
  63. (63).
    D. Shao, G. Hou, J. Li, T. Wen, X. Ren, and X. Wang, Chem. Eng. J., 255, 604 (2014).CrossRefGoogle Scholar
  64. (64).
    J. Hou, Z. Liu, and P. Zhang, J. Power Sources, 224, 139 (2013).CrossRefGoogle Scholar
  65. (65).
    Y. Zou, Q. Wang, C. Xiang, C. Tang, H. Chu, S. Qiu, E. Yan, F. Xu, and L. Sun, Int. J. Hydrogen Energ., 41, 5396 (2016).CrossRefGoogle Scholar
  66. (66).
    S. Liu, X. Xing, J. Yu, W. Lian, J. Li, M. Cui, and J. Huang, Biosens. Bioelectron., 36, 186 (2012).PubMedCrossRefGoogle Scholar
  67. (67).
    E. Asadian, S. Shahrokhian, A. I. zad, and E. Jokar, Sens. Actuators B: Chem., 196, 582 (2014).CrossRefGoogle Scholar
  68. (68).
    W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).CrossRefGoogle Scholar
  69. (69).
    F. Ye, B. Zhao, R. Ran, and Z. Shao, J. Power Sources, 290, 61 (2015).CrossRefGoogle Scholar
  70. (70).
    N. R. Chiou and A. Epstein, Thinsp, Adv. Mater., 17, 1679 (2010).CrossRefGoogle Scholar
  71. (71).
    L. Su and Y. X. Gan, Compos. Part B: Eng., 43, 170 (2012).CrossRefGoogle Scholar
  72. (72).
    A. Parsa and S. A. Salout, J Electroanal. Chem., 760, 113 (2016).CrossRefGoogle Scholar
  73. (73).
    J. Xu, K. Wang, S. Z. Zu, B. H. Han, and Z. Wei, ACS Nano, 4, 5019 (2010).PubMedCrossRefPubMedCentralGoogle Scholar
  74. (74).
    S. Wang, L. Ma, M. Gan, S. Fu, W. Dai, T. Zhou, X. Sun, H. Wang, and H. Wang, J Power Sources, 299, 347 (2015).CrossRefGoogle Scholar
  75. (75).
    N. P. S. Chauhan, M. Mozafari, N. S. Chundawat, K. Meghwal, R. Ameta, and S. C. Ameta, J Ind. Eng. Chem., 36, 13 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Li Li
    • 1
    Email author
  • Huan Liu
    • 1
  • Boya Li
    • 1
  • Yanan Guo
    • 1
  • Liming Qing
    • 1
  • Baohui Wang
    • 1
  1. 1.Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical EngineeringNortheast Petroleum UniversityDaqingP. R. China

Personalised recommendations