Enzymatically Crosslinkable Hyaluronic Acid-Gelatin Hybrid Hydrogels as Potential Bioinks for Tissue Regeneration

  • Phuong Le Thi
  • Joo Young Son
  • Yunki Lee
  • Seung Bae Ryu
  • Kyung Min Park
  • Ki Dong ParkEmail author


Hydrogels that mimic the composition and properties of the extracellular matrix have attracted great attention as potential polymeric scaffolds for tissue engineering applications. In this study, an injectable hydrogel composed of hyaluronic acid and gelatin was developed via the oxidative coupling reaction using horseradish peroxidase (HRP). The hydrogel was prepared by mixing two phenol-conjugated polymer solutions, hyaluronic acid-tyramine (HA-TA) and gelatin-hydroxyphenyl propionic acid (GH), in the presence of HRP and hydrogen peroxide (H202). The gelation rate and mechanical properties of composite hydrogel were controlled by adjusting the HRP and H202 concentrations, respectively Compared to the pure HA-TA hydrogels, the stability and cellular behaviors of composite hydrogel improved significantly In addition, the injectable hydrogel system showed good performance in 3D printing with high cell viability after one day of printing. The results suggest that enzymatically crosslinked HA-TA and GH hybrid (HA-TA/GH) composite of HA-TA and GH hydrogel has the potential as a material for tissue engineering and 3D printing biofabrication.


injectable hydrogels hyaluronic acid gelatin tissue regeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. (1).
    S. Ahadian, R.-B. Sadeghian, S. Salehi, S. Ostrovidov, H. Bae, M. Ramalingam, and A. Khademhosseini, Bioconjugate Chem., 26, 1984 (2015).CrossRefGoogle Scholar
  2. (2).
    E. Caló and V.-V. Khutoryanskiy, Eur. Polym. J., 65, 252 (2015).CrossRefGoogle Scholar
  3. (3).
    D.-Y. Ko, U.-P. Shinde, B. Yeon, and B. Jeong, Prog. Polym. Sci., 38, 672 (2013).CrossRefGoogle Scholar
  4. (4).
    Y. Liu, W. He, Z. Zhang, and B. Lee, Gels, 4, 46 (2018).CrossRefGoogle Scholar
  5. (5).
    P.-M. Kharkar, K.-L. Kiick, and A.-M. Kloxin, Chem. Soc. Rev., 42, 7335 (2013).CrossRefGoogle Scholar
  6. (6).
    C. Fiorica, F.-S. Palumbo, G. Pitarresi, A. Gulino, S. Agnello, and G. Giammona, RSC Adv., 5, 19715 (2015).CrossRefGoogle Scholar
  7. (7).
    K.-M. Park, K.-S. Ko, Y.-K. Joung H. Shin, and K-D. Park, J. Mater. Chem., 21, 13180 (2011).CrossRefGoogle Scholar
  8. (8).
    J. Carthew, J.-E. Frith, J.-S. Forsythe, and V.-X. Truong, J. Mater. Chem. B, 6, 1394 (2018).CrossRefGoogle Scholar
  9. (9).
    Z. Wang, Z. Tian, F. Menard, and K. Kim, Biofabrication, 9, 044101 (2017).CrossRefGoogle Scholar
  10. (10).
    F. Lee, J.-E. Chung, and M. Kurisawa, Soft Matter, 4, 880 (2008).CrossRefGoogle Scholar
  11. (11).
    G. Eke, N. Mangir, N. Hasirci, S. MacNeil, and V. Hasirci, Biomaterials, 129, 188 (2017).CrossRefGoogle Scholar
  12. (12).
    C. Liu, K.-H. Bae, A. Yamashita, J.-E. Chung, and M. Kurisawa, Biomacromolecules, 18, 3143 (2017).CrossRefGoogle Scholar
  13. (13).
    S. Park and K.-M. Park, Biomaterials, 182, 234 (2018).CrossRefGoogle Scholar
  14. (14).
    S. Wu, L. Deng, H. Hsia, K. Xu, Y. He, Q. Huang, Y. Peng, Z. Zhou, and C. Peng, J. Biomater.Appl., 10, 1380 (2017).CrossRefGoogle Scholar
  15. (15).
    L.-S. Teixeira, J. Feijen, C.-V. van Blitterswijk, P.-J. Dijkstra, and M. Karperien, Biomaterials, 33, 1281 (2012).CrossRefGoogle Scholar
  16. (16).
    Z. Fan, Y. Zhang, S. Fang C. Xu, and X. Li, RSCAdv., 5, 1929 (2015).Google Scholar
  17. (17).
    J.-W. Bae, J.-H. Choi, Y. Lee, and K-D. Park, J. Tissue Eng. Regen. M., 9, 1225 (2015).CrossRefGoogle Scholar
  18. (18).
    M. Khanmohammadi, M.-B. Dastjerdi, A. Ai, A. Ahmadi, A. Godarzi, A. Rahimi, and J. Ai, Biomater. Sci., 6, 1286 (2018).CrossRefGoogle Scholar
  19. (19).
    S. Sakai and M. Nakahata, Chem. Asian J., 12, 3098 (2017).CrossRefGoogle Scholar
  20. (20).
    F. Lee, K.-H. Bae, and M. Kurisawa, Biomed. Mater., 11, 014101 (2015).CrossRefGoogle Scholar
  21. (21).
    N. Ganesh, C. Hanna, S.-V. Nair, and L.-S. Nair, Int. J. Biol. Macromol., 55, 289 (2013).CrossRefGoogle Scholar
  22. (22).
    H. Ying, J. Zhou, M. Wang, D. Su, Q. Ma, G. Lv, and J. Chen, Mater. Sci. Eng. C, 101, 487 (2019).CrossRefGoogle Scholar
  23. (23).
    M.-A. da Silva, F. Bode, A.-F. Drake, S. Goldoni, M-M. Stevens, and C.-A. Dreiss, Macromoi. Biosci., 14, 817 (2014).CrossRefGoogle Scholar
  24. (24).
    T.-T. Hoang Thi, Y. Lee, P. Le Thi, and K-D. Park, Macromoi. Res., DOI 10.1007/s13233-019-7115-3(2019).Google Scholar
  25. (25).
    R. Jin, L.-S. Moreira Teixeira, P.-J. Dijkstra, C.-A. van Blitterswijk, M. Karperien, and J. Feijen, J. Control. Release, 152, 186 (2011).CrossRefGoogle Scholar
  26. (26).
    F. Chen, S. Yu, B. Liu, Y. Ni, C. Yu, Y. Su, X. Zhu, X. Yu, Y. Zhou, and D. Yan, Sci. Rep., 6, 20014 (2016).CrossRefGoogle Scholar
  27. (27).
    N.-Q. Tran, Y-K. Joung, E. Lih, K.-M. Park and K.-D. Park, Macromoi. Res., 19, 300 (2011).CrossRefGoogle Scholar
  28. (28).
    S.-M. Choi, Y. Lee, J.-Y. Son, J.-W. Bae, K.-M. Park and K.-D. Park, Macromoi. Res., 25, 85 (2017).CrossRefGoogle Scholar
  29. (29).
    Y. Lee, J.-W. Bae, D.-H. Oh, K.-M. Park Y.-W. Chun, H.-J. Sung, and K.-D. Park, J. Mater. Chem B, 1, 2407 (2013).CrossRefGoogle Scholar
  30. (30).
    M. Kurisawa, J.-E. Chung, Y.-Y. Yang, S.-J. Gao, and H. Uyama, Chem. Commun, 4312 (2005).Google Scholar
  31. (31).
    L.-S. Wang, C. Du, J.-E. Chung, and M. Kurisawa, Acta Biomater, 8, 1826 (2012).CrossRefGoogle Scholar
  32. (32).
    R. Jin, L.-S. Moreira Teixeira, P.-J. Dijkstra, M. Karperien, C.-A. van Blitterswijk, Z.-Y. Zhong, and J. Feijen, Biomaterials, 30, 2544 (2009).CrossRefGoogle Scholar
  33. (33).
    R. Jin, B. Lou, and C. Lin, Polym. Int., 62, 353 (2013).CrossRefGoogle Scholar
  34. (34).
    C. Ghobril and M.-W. Grinstaff, Chem. Soc. Rev., 44, 1820 (2015).CrossRefGoogle Scholar
  35. (35).
    W. Ramadhan, G. Kagawa, Y. Hamada, K. Moriyama, R. Wakabayashi, K. Minamihata, M. Goto, and N. Kamiya, ACS Appl. Bio Mater., 2, 2600 (2019).CrossRefGoogle Scholar
  36. (36).
    C.-R. Silva, P.-S. Babo, M. Gulino, L. Costa, J.-M. Oliveira, J. Silva-Cor-reia J. R-M.-A Domingues, R.-L. Reis, and M.-E. Gomes, Acta Biomater., 77, 155 (2018).CrossRefGoogle Scholar
  37. (37).
    J.-M. Oliveira, L. Carvalho, J. Silva-Correia, S. Vieira, M. Majchrzak, B. Lukomska, L. Stanaszek P. Strymecka, I. Malysz-Cymborska, D. Golubzyk L. Kalkowski, R.-L. Reis, M. Janowski, and P. Walczak NPJ Regen. Med., 3, 8 (2018).CrossRefGoogle Scholar
  38. (38).
    Z. Lin, M. Wu, H. He, Q. Liang, C. Hu, Z. Zeng, D. Cheng, G. Wang, D. Chen, H. Pan, and C. Ruan, Adv. Funct Mater, 29, 1808439 (2019).CrossRefGoogle Scholar
  39. (39).
    C. Xu, W. Lee, G. Dai, and Y. Hong, ACS Appl. Mater. Interfaces, 10, 9969 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2020

Authors and Affiliations

  • Phuong Le Thi
    • 1
  • Joo Young Son
    • 1
  • Yunki Lee
    • 1
  • Seung Bae Ryu
    • 1
  • Kyung Min Park
    • 2
  • Ki Dong Park
    • 1
    Email author
  1. 1.Department of Molecular Science and TechnologyAjou UniversitySuwonKorea
  2. 2.Department of Bioengineering and Nano-BioengineeringIncheon National UniversityIncheonKorea

Personalised recommendations