Antibacterial Activity of pH-Sensitive Silver(I)/Poly(2-hydroxyethyl acrylate/itaconic acid) Hydrogels

  • Jovana S. Vuković
  • Aleksandra A. Perić-Grujić
  • Dragana S. Mitić-Ćulafić
  • Biljana Dj. Božić Nedeljković
  • Simonida Lj. TomićEmail author


Since the management of infections becomes prior global healthcare issue, the “post antibiotic era” requires innovative and interdisciplinary approach. As an alternative to widespread and, nowdays mostly uneffective, antibiotic treatment of infections, the series of hydrogels were developed and further investigated as novel antibacterial biomaterials. The hydrogels based on 2-hydroxyethyl acrylate and itaconic acid were synthesized and used for silver(I) ions incorporation. The structural, thermal and swelling characteristics were examined by Fourier transform infrared spectroscopy, differential scanning calorimetry, and swelling study conducted in wide range of pHs at 37 °C. Results confirmed the expected structure, while the glass transition temperatures (Tg) of the hydrogels were detected in range of 10–37 °C. The in vitro release study revealed suitability of these pH sensitive hydrogels as the systems for topical delivery of silver(I) ions. Performed MTT test and Comet assay proved biocompatibility of the hydrogels, as well as the absence of acute genotoxic effect on human fibroblast cells (MRC-5). The hydrogels exhibited satisfying antibacterial activity against methicillin sensitive Staphylococcus aureus (MSSA) and methicillin resistant Staphylococcus aureus (MRSA), indicating the capacity to treat the life-threatening infections.


hydrogel 2-hydroxyethyl acrylate silver antibacterial activity methicillin resistant Staphylococcus aureus (MRSA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. (1).
    R. Greenhalgh, N. C. Dempsey-Hibbert, and K. A. Whitehead, Int. Biodeterior. Biodegrad., 136, 1 (2019).CrossRefGoogle Scholar
  2. (2).
    A. Munoz-Bonilla and M. Fernández-García, Prog. Polym. Sci., 37, 281 (2012).CrossRefGoogle Scholar
  3. (3).
    K. Vasilev, A. Cavallaro, and P. Zilm, Molecule., 23, 585 (2018).CrossRefGoogle Scholar
  4. (4).
    K. R. Yang, Q. Han, B. Chen, Y. Zheng, K. Zhang, Q. Li, and J. C. Wang, Int. J. Nanomed., 13, 2217 (2018).CrossRefGoogle Scholar
  5. (5).
    B. Li and T. J. Webster, J. Orthop. Res., 36, 22 (2018).PubMedPubMedCentralGoogle Scholar
  6. (6).
    L. J. Bessa, P. Fazii, M. Di Giulio, and L. Cellini, Int. Wound J., 12, 47 (2015).PubMedCrossRefPubMedCentralGoogle Scholar
  7. (7).
    P. G. Bowler, B. I. Duerden, and D. G. Armstrong, Clin. Microbiol. Rev., 14, 244 (2001).PubMedPubMedCentralCrossRefGoogle Scholar
  8. (8).
    S. L. Percival, K. E. Hill, S. Malic, D. W. Thomas, and D. W. Williams, Wound Repair Regen., 19, 1 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  9. (9).
    H. Schöfer, R. Bruns, I. Effendy, M. Hartmann, U. Jappe, A. Plettenberg, H. Reimann, H. Seifert, P. Shah, C. Sunderkötter, T. Weberschock, T. A. Wichelhaus, and A. Nast, J. Dtsch. Dermatol. Ges., 9, 953 (2011).PubMedPubMedCentralGoogle Scholar
  10. (10).
    K. S. Santos, A. M. Barbosa, L. P. da Costa, M. S. Pinheiro, M. B. Oliveira, F. Ferreira, and F. Padilha, Molecule., 21, 1 (2016).CrossRefGoogle Scholar
  11. (11).
    B. A. Lipsky and C. Hoey, Clin. Inf. Dis., 49, 1541 (2009).CrossRefGoogle Scholar
  12. (12).
    C. T. Spann, S. C. Taylor, and J. M. Weinberg, Clin. Dermatol., 21, 70 (2003).CrossRefGoogle Scholar
  13. (13).
    P. Huira, J. K. Logan, S. Papadopoulos, and D. Whitney, Pharmacotherap., 32, 1006 (2012).CrossRefGoogle Scholar
  14. (14).
    B. A. Lipsky, Diabetes Metab. Res. Rev., 32, 246 (2016).PubMedCrossRefPubMedCentralGoogle Scholar
  15. (15).
    A. J. Alanis, Arch. Med. Res., 36, 697 (2005).PubMedCrossRefPubMedCentralGoogle Scholar
  16. (16).
    G. Sussman, T. Swanson, J. Black, R. Cooper, G. Schultz, J. Fletcher, and D. Smith, Wounds Int., 5, 4 (2014).Google Scholar
  17. (17).
    J. B. Wright, K. Lam, and R. E. Burrell, Am. J. Infect. Control., 26, 572 (1998).PubMedCrossRefPubMedCentralGoogle Scholar
  18. (18).
    T. Bjarnsholt, K. Kirketerp-Møller, P. Ø. Jensen, K. G. Madsen, R. Phipps, K. Krogfelt, N. H øiby, and M. Givskov, Wound Repair. Regen., 16, 2 (2008).PubMedCrossRefPubMedCentralGoogle Scholar
  19. (19).
    C. Attinger and R. Wolcott, Adv. Wound Care (New Rochelle), 1, 127 (2012).CrossRefGoogle Scholar
  20. (20).
    S. L. Percival, S. M. McCarty, and B. Lipsky, Adv. Wound Care (New Rochelle), 4, 373 (2015).CrossRefGoogle Scholar
  21. (21).
    J. Fernebro, Drug Resist. Updat., 14, 125 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  22. (22).
    M. Zucca and D. Savoia, Int. J. Biomed. Sci., 6, 77 (2010).PubMedPubMedCentralGoogle Scholar
  23. (23).
    Y. H. Lin, J. H. Lin, S. H. Wang, T. H. Ko, and G. C. Tseng, J. Biomed. Mater. Res. Part., 100, 2288 (2012).CrossRefGoogle Scholar
  24. (24).
    M. K. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade, J. Appl. Microbiol., 112, 841 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  25. (25).
    R. Singh and D. Singh, J. Mater. Sci.-Mater. Med., 23, 2649 (2012).PubMedCrossRefPubMedCentralGoogle Scholar
  26. (26).
    S. L. Percival, W. Slone, S. Linton, T. Okel, L. Corum, and J. G. Thomas, Int. Wound J., 8, 237 (2011).PubMedCrossRefPubMedCentralGoogle Scholar
  27. (27).
    D. E. Marx and D. J. Barillo, Burn., 40, s9 (2014).CrossRefGoogle Scholar
  28. (28).
    T. Maneerung, S. Tokura, and R. Rujiravanit, Carbohydr. Polym., 72, 43 (2008).CrossRefGoogle Scholar
  29. (29).
    Z. Huang, P. Xu, G. Chen, G. Zeng, A. Chen, Z. Song, K. He, L. Yuan, H. Li, and L. Hu, Chemospher., 196, 575 (2018).CrossRefGoogle Scholar
  30. (30).
    Z. Huang, Z. Zeng, A. Chen, G. Zeng, R. Xiao, P. Xu, K. He, Z. Song, L. Hu, M. Peng, T. Huang, and G. Chen, Chemospher., 203, 199 (2018).CrossRefGoogle Scholar
  31. (31).
    Z. Huang, K. He, Z. Song, G. Zeng, A. Chen, L. Yuan, H. Li, L. Hu, Z. Guo, and G. Chen, Chemospher., 211, 573 (2018).CrossRefGoogle Scholar
  32. (32).
    Z. Huang, G. Chen, G. Zeng, Z. Guo, K. He, L. Hu, J. Wu, L. Zhang, Y. Zhu, and Z. Song, J. Hazard. Mater., 321, 37 (2017).PubMedCrossRefPubMedCentralGoogle Scholar
  33. (33).
    J. Kopecek and J. Yang, Polym. Int., 56, 1078 (2007).CrossRefGoogle Scholar
  34. (34).
    J. M. Rosiak, J. Control. Release., 31, 9 (1994).CrossRefGoogle Scholar
  35. (35).
    B. Balakrishnan, M. Mohanty, P. R. Umashankar, and A. Jayakrishnan, Biomaterial., 26, 6335 (2005).CrossRefGoogle Scholar
  36. (36).
    S. O. Rogero, S. M. Malmonge, A. B. Lugao, T. I. Ikeda, L. Miyamaru, and A. S. Cruz, Artif. Organ., 27, 424 (2003).CrossRefGoogle Scholar
  37. (37).
    C. J. De Groot, M. J. A. Van Luyn, W. N. E. Van Dijk-Wolthuis, J. A. Cadee, J. A. Planting, W. Den Otter, and W. E. Hennink, Biomaterial., 22, 1197 (2001).CrossRefGoogle Scholar
  38. (38).
    E. Karadag, D. Saraydin, S. Cetinkaya, and O. Guven, Biomaterial., 17, 67 (1996).CrossRefGoogle Scholar
  39. (39).
    L. Ionov, Adv. Funct. Mater., 23, 4555 (2013).CrossRefGoogle Scholar
  40. (40).
    M. C. Koetting, J. T. Peters, S. D. Steichen, and N. A. Peppas, Mater. Sci. Eng. R. Rep., 93, 1 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  41. (41).
    N. Ninan, A. Forget, V. P. Shastri, N. H. Voelcker, and A. Blencowe, ACS Appl. Mater. Interface., 8, 28511 (2016).CrossRefGoogle Scholar
  42. (42).
    T. R. Dargaville, B. L. Farrugia, J. A. Broadbent, S. Pace, Z. Upton, and N. H. Voelcker, Biosens. Bioelectron., 41, 30 (2013).PubMedCrossRefPubMedCentralGoogle Scholar
  43. (43).
    E. M. Jones, C. A. Cochrane, and S. L. Percival, Adv. Wound Care (New Rochelle), 4, 431 (2015).CrossRefGoogle Scholar
  44. (44).
    J. S. Vuković, M. M. Babić, K. M. Antić, J. M. Filipović, S. T. Stojanović, S. J. Najman, and S. Lj. Tomić, Mater. Chem. Phys., 175, 158 (2016).CrossRefGoogle Scholar
  45. (45).
    J. S. Vuković, M. M. Babić, K. M. Antić, M. G. Miljković, A. A. Peric-Grujić, J. M. Filipović, and S. Lj. Tomić, Mater. Chem. Phys., 164, 51 (2015).CrossRefGoogle Scholar
  46. (46).
    C. L. Bell and N. A. Peppas, J. Control. Releas., 37, 277 (1995).CrossRefGoogle Scholar
  47. (47).
    P. L. Ritger and N. A. Peppas, J. Control. Releas., 5, 23 (1987).CrossRefGoogle Scholar
  48. (48).
    A. R. Khare, N. A. Peppas, G. Massimo, and P. Colombo, J. Control. Releas., 22, 239 (1992).CrossRefGoogle Scholar
  49. (49).
    H. J. Scott, Macromol. Sci. Phys. B, 31, 1 (1992).CrossRefGoogle Scholar
  50. (50).
    Y. Yin, Y. Yang, and H. Xu, J. Pol. Sci. Part B Polym. Phys., 15, 3128 (2001).CrossRefGoogle Scholar
  51. (51).
    N. A. Peppas and J. J. Sahlin, Int. J. Pharm., 57, 169 (1989).CrossRefGoogle Scholar
  52. (52).
    K. Yamaoka, T. Nakagawa, and T. Uno, J. Pharmacokinet. Bioph., 6, 165 (1978).CrossRefGoogle Scholar
  53. (53).
    T. Mosmann, J. Immunol. Method., 65, 55 (1983).CrossRefGoogle Scholar
  54. (54).
    M. Ohno and T. Abe, J. Immunol. Method., 145, 199 (1991).CrossRefGoogle Scholar
  55. (55).
    A. Dhawan, M. Bajpayee, and D. Parmar, Cell Biol. Toxicol., 25, 5 (2009).PubMedCrossRefPubMedCentralGoogle Scholar
  56. (56).
    A. S. Jaran, Eur. Sci. J., 13, 1 (2017).Google Scholar
  57. (57).
    G. Kronvall, I. Karlsson, M. Walder, M. Sörberg, and L. E. Nilsson, J. Antimicrob. Chemoth., 57, 498 (2006).CrossRefGoogle Scholar
  58. (58).
    Y. Xiang and D. Chen, Eur. Polym. J., 43, 4178 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Jovana S. Vuković
    • 1
  • Aleksandra A. Perić-Grujić
    • 1
  • Dragana S. Mitić-Ćulafić
    • 2
  • Biljana Dj. Božić Nedeljković
    • 2
  • Simonida Lj. Tomić
    • 1
    Email author
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations