Advertisement

Synthesis of Highly Durable Sulfonated Polyketone Fibers by Direct Sulfonation Reaction and Their Adsorption Properties for Heavy Metals

  • Seong Yeon Hwang
  • Yong Seok Cho
  • Taekeun Kim
  • Yoon Seo Jung
  • Taek Sung HwangEmail author
Article
  • 8 Downloads

Abstract

In this study, sulfonated polyketone (SPK) cation exchange fibers were prepared by direct sulfonation with various concentration of sulfonating agent and sulfonation time. Fourier-transform infrared (FTIR) spectrum analysis was performed to confirm the structure of the sulfonated polyketone cation exchange fibers. The degree of sulfonation (DOS) and water uptake (W.U) of SPK cation exchange fibers were measured by gravimetric method and ion exchange capacity (IEC) was measured by titration method, respectively. The DOS of the SPK cation exchange fibers increased with sulfonation time and concentration of sulfonating agent. The SPK cation exchange fibers sulfonated for 15 min at a mole ratio of 1:2 of polyketone to chlorosulfonic acid had the DOS of 47%, ion exchange capacity 3.36 meq/g, and water content 35.1%, showing the best performance.

Keywords

Ion exchange fiber chlorosulfonic acid degree of sulfonation and heavy metal ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. (1).
    J. F. Wei, Z. P. Wang, J. Zhang, Y. Y. Wu, Z. P. Zhang, and C. H. Xiong, React. Funct. Polym., 65, 127 (2005).CrossRefGoogle Scholar
  2. (2).
    P. Kampalanonwat and P. Supaphol, ACS Appl. Mater. Inter., 2, 3619 (2010).CrossRefGoogle Scholar
  3. (3).
    F. C. Rix, M. Brookhart, and P. S. White, J. Am. Chem. Soc., 118, 4746 (1996).CrossRefGoogle Scholar
  4. (4).
    C. Bianchini and A. Meli, Coord. Chem. Rev., 225, 35 (2002).CrossRefGoogle Scholar
  5. (5).
    G. P. Belov and E. V. Novikova, Russian Chem. Rev., 73, 267 (2004).CrossRefGoogle Scholar
  6. (6).
    A. Sommazzi and Garbassi, F., Prog. Polym. Sci., 22, 1547 (1997).CrossRefGoogle Scholar
  7. (7).
    N. Ataollahi, K. Vezzù, G. Nawn, G. Pace, G. Cavinato, F. Girardi, P. Scardi, V. Di Noto, and R. Di Maggio, Electrochim. Acta, 226, 148 (2017).CrossRefGoogle Scholar
  8. (8).
    I. S. Kim, C. W. Hwang, Y. J. Kim, A. Canlier, K. S. Jeong, and T. S. Hwang, Macromol. Res., 25, 1063 (2017).CrossRefGoogle Scholar
  9. (9).
    M. Paronen, F. Sundholm, D. Ostrovskii, P. Jacobsson, G. Jeschke, E. Rauhala, and P. Tikkanen, Chem. Mater., 15, 4447 (2003).CrossRefGoogle Scholar
  10. (10).
    K. W. Kang and T. S. Hwang, Membr. J., 25, 406 (2015).CrossRefGoogle Scholar
  11. (11).
    F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Membr. Sci., 197, 231 (2002).CrossRefGoogle Scholar
  12. (12).
    H. Ghassemi, J. E. McGrath, and T. A. Zawodzinski Jr., Polymer, 47, 4132 (2006).CrossRefGoogle Scholar
  13. (13).
    B. C. Johnson, I. Yilgör, C. Tran, M. Iqbal, J. P. Wightman, D. R. Lloyd, and J. E. McGrath, J. Polym. Sci., Polym. Chem. Ed., 22, 721 (1984).CrossRefGoogle Scholar
  14. (14).
    Y. F. Lin, C. Y. Yen, C. H. Hung, Y. H. Hsiao, and C. C. M. Ma, J. Power Sources, 168, 162 (2007).CrossRefGoogle Scholar
  15. (15).
    M. V. Reddy, G. C. S. Reddy, R. M. N. Kalla, and Y. T. Jeong, RSC Adv., 5, 35267 (2015).CrossRefGoogle Scholar
  16. (16).
    P. Staiti, F. Lufrano, A. S. Arico, E. Passalacqua, and V. Antonucci, J. Membr. Sci., 188, 71 (2001).CrossRefGoogle Scholar
  17. (17).
    X. Li, C. Zhao, H. Lu, Z. Wang, and H. Na, Polymer, 46, 5820 (2005).CrossRefGoogle Scholar
  18. (18).
    K. W. Kang, C. W. Hwang, and T. S. Hwang, Macromol. Res., 23, 1126 (2015).CrossRefGoogle Scholar
  19. (19).
    L. Xu and H. K. Lee, J. Chromatogr. A, 1216, 6549 (2009).CrossRefGoogle Scholar
  20. (20).
    J. P. Shin, I. J. Park, S. B. Lee, D. H. Seo, and J. H. Kim, Membr. J., 14, 173 (2004).Google Scholar
  21. (21).
    N. S. Kwak, S. M. Kim, Y. K. Yang, K. S. Kang, and T. S. Hwang, Polym. Korea, 28, 397 (2004).Google Scholar
  22. (22).
    J. S. Park and Y. C. Nho, Polym. Korea, 22, 47 (1998).Google Scholar
  23. (23).
    F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, and E. Passalacqua, Solid State Ionics, 145, 47 (2001).CrossRefGoogle Scholar
  24. (24).
    G. Yan and T. Viraraghavan, Water Res., 37, 4486 (2003).CrossRefGoogle Scholar
  25. (25).
    W. Y. Kim, Y. S. Kim, G. C. Yug, and D. Y. Shin, Synthesis and Adsorption Properties for Heavy Metal Ions of Amidoxime Type Chelate Resin, 16, 277 (1992).Google Scholar
  26. (26).
    T. Yoshioka, Bull. Chem. Soc. Japan, 58, 2618 (1985).CrossRefGoogle Scholar
  27. (27).
    J.-W. Lee, S.-H. Kim, and G.-S. Hwang, J. Korea Academia-Industrial, 18, 584 (2017).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Seong Yeon Hwang
    • 1
  • Yong Seok Cho
    • 1
  • Taekeun Kim
    • 2
  • Yoon Seo Jung
    • 1
  • Taek Sung Hwang
    • 1
    Email author
  1. 1.Department of Applied Chemical Engineering, College of EngineeringChungnam National UniversityDaejeonKorea
  2. 2.Department of Chemical Engineering Education, College of EducationChungnam National UniversityDaejeonKorea

Personalised recommendations