Advertisement

Effects of Crystallinity and Molecular Weight on the Melting Behavior and Cell Morphology of Expanded Polypropylene in Bead Foam Manufacturing

  • Byung Kak Jang
  • Mun Ho KimEmail author
  • O. Ok ParkEmail author
Article
  • 5 Downloads

Abstract

The preparation of expended polypropylene (EPP) by a bead foam processing is of great significance for their potential applications, but the development of a facile method adopting the actual manufacturing process remains a great challenge. In this study, a new bead foam processing based on the actual manufacturing process was successfully developed to produce high quality EPP. Suitable processing conditions as well as the effect of the precursor sample properties associated with expanded polypropylene (EPP) manufactured by the bead foam process were investigated. The elongational viscosity was firstly measured using polypropylene (PP) samples with different crystallinities and molecular weights in order to investigate the relevant foaming temperatures. The crystallinity and molecular weight of each sample were controlled by the addition of comonomer, and the melting behavior and cell morphology of the foamed specimens were analyzed utilizing a pilot-scale foaming experiment. Based on our results and observations, a plausible mechanism for formation of high quality EPP was proposed. This work offers a new method for fabricating EPP with a high quality by the bead foam processing. It also provides important information about how the morphology and cell numbers of EPP may be finely controlled by the processing conditions.

Keywords

expanded polypropylene bead foaming crystallinity double melting peak molecular weight 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. (1).
    A. Mohebbi, F. Mighri, A. Ajji, and D. Rodrigue, Cell. Polym., 34, 6 (2015).Google Scholar
  2. (2).
    P. Guo, Y. Liu, Y. Xu, M. Lu, S. Zhang, and T. Liu, J. Cell Plast., 50, 321 (2014).CrossRefGoogle Scholar
  3. (3).
    J. Ding, W. Ma, F. Song, and Q. Zhong, J. Appl. Polym. Sci., 130, 2877 (2013).CrossRefGoogle Scholar
  4. (4).
    Z. Xu, Z. Zhang, Y. Guan, D. Wei, and A. Zheng, J. Cell. Plast., 49, 317 (2013).CrossRefGoogle Scholar
  5. (5).
    M. Rätzsch, M. Arnold, E. Borsig, H. Bucka, and N. Reichelt, Prog. Polym. Sci., 27, 1195 (2002).CrossRefGoogle Scholar
  6. (6).
    R. Zhang, Y. Xiong, Q. Liu, and S. Hu, J. Appl. Polym. Sci., 134, 45121 (2017).CrossRefGoogle Scholar
  7. (7).
    S. Doroudiani, C. B. Park, and M. T. Kortschot, Polym. Eng. Sci., 38, 1205 (1998).CrossRefGoogle Scholar
  8. (8).
    D. Raps, N. Hossieny, C. B. Park, and V. Alstädt, Polymer, 56, 5 (2015).CrossRefGoogle Scholar
  9. (9).
    M. Nofar, Y. Guo, and C. B. Park, Ind. Eng. Chem. Res., 52, 2297 (2013).CrossRefGoogle Scholar
  10. (10).
    E. Huang, X. Liao, C. Zhao, C. B. Park, Q. Yang, and G. Li, ACS Sustain. Chem. Eng., 4, 1810 (2016).CrossRefGoogle Scholar
  11. (11).
    Y. Guo, N. Hossieny, R. K. M. Chu, C. B. Park, and N. Zhou, Chem. Eng. J., 214, 180 (2013).CrossRefGoogle Scholar
  12. (12).
    M. Nofar, A. Ameli, and C. B. Park, Mater. Des., 83, 413 (2015).CrossRefGoogle Scholar
  13. (13).
    M. Nofar, A. Ameli, and C. B. Park, Polymer, 69, 83 (2015).CrossRefGoogle Scholar
  14. (14).
    D. C. Li, T. Liu, L. Zhao, and W. K. Yuan, J. Supercrit. Fluids, 60, 89 (2011).CrossRefGoogle Scholar
  15. (15).
    R. P. Laggendijk, A. H. Hogt, A. Buijtenhuijs, and A. D Gotsis, Polymer, 42, 10035 (2001).CrossRefGoogle Scholar
  16. (16).
    P. Spitael, Christopher, and W. Macosko, Polym. Eng. Sci., 44, 2090 (2004).CrossRefGoogle Scholar
  17. (17).
    S. Lee, L. Zhu, and J. Maia, Polymer, 70 173 (2015).CrossRefGoogle Scholar
  18. (18).
    S. Kurzbeck, F. Oster, and H. Münstedt, J. Rheol., 43, 359 (1999).CrossRefGoogle Scholar
  19. (19).
    C. Gabriel and H. Münstedt, J. Rheol., 47, 619 (2003).CrossRefGoogle Scholar
  20. (20).
    Q. Liu, X. Sun, H. Li, and S. Yan, Polymer, 54, 4404 (2013).CrossRefGoogle Scholar
  21. (21).
    S. N. Leung, A. Wong, C. Wang, and C. B. Park, J. Supercrit. Fluids, 63, 187 (2012).CrossRefGoogle Scholar
  22. (22).
    R. H. Somani, L. Yang, I. Sics, B. S. Hsiao, N. V. Pogodina, H. H. Winter, P. Agarwal, H. Fruitwala, and A. Tsou, Macromol. Symp., 185, 105 (2002).CrossRefGoogle Scholar
  23. (23).
    N. Hossieny, A. Ameli, and C. B. Park, Ind. Eng. Chem. Res., 52, 8236 (2013).CrossRefGoogle Scholar
  24. (24).
    Z. Lei, H. Ohyabu, Y. Sato, H. Inomata, and R. L. Smith Jr., J. Supercrit. Fluids, 40, 452 (2007).CrossRefGoogle Scholar
  25. (25).
    M. Takada, M. Tanigaki, and M. Ohsima, Polym. Eng. Sci., 41, 1938 (2001).CrossRefGoogle Scholar
  26. (26).
    M. Varma-Nair, P. Y. Handa, A. K. Mehta, and P. Agarwal, Thermochim. Acta, 396, 57 (2003).CrossRefGoogle Scholar
  27. (27).
    J. Yang, J. Appl. Polym. Sci., 118, 1520 (2010).Google Scholar
  28. (28).
    X. Zhu, Y. Li, D. Yan, and Y. Fang, Polymer, 42, 9217 (2001).CrossRefGoogle Scholar
  29. (29).
    M. Naiki, T. Kikkawa, and Y. Endo, Polymer, 42, 5471 (2001).CrossRefGoogle Scholar
  30. (30).
    D. Li, T. Liu, L. Zhao, and W. Yuan, Ind. Eng. Chem. Res., 48, 7117 (2009).CrossRefGoogle Scholar
  31. (31).
    Y. C. Kim, W. Ahn, and C. Y. Kim, Polym. Eng. Sci., 37, 1003 (1997).CrossRefGoogle Scholar
  32. (32).
    M. Gahleitner, J. Wolfschwenger, C. Bachner, K. Bernreitner, and W. Neißl, J. Appl. Polym. Sci., 61, 649 (1996).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Biochemical Engineering (BK 21+ Graduate program)Korea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  2. 2.Department of Polymer EngineeringPukyong National UniversityBusanKorea
  3. 3.LOTTE Chemical Research InstituteDaejeonKorea

Personalised recommendations