Preparation of High-Elongation and High-Toughness Poly(l-lactide) Using Multi-Arm Methyl-β-Cyclodextrin-Poly(l-lactide)

  • Jin-Hee Hong
  • Seungjoo Haam
  • Giobin LimEmail author
  • Jong-Hoon RyuEmail author


We synthesized 3–16 armed methyl-β-cyclodextrin-poly(l-lactide) (MCD-PLLA) polymers, and then blended them with PLLA. The addition of MCD-PLLA with 9 or 12 arms to PLLA dramatically increased the elongation at break (E) and toughness (UT) of PLLA with little affecting its Tg and tensile strength. The highest E and UT were obtained to be 127% and 6.85 GJ/m3, respectively, for PLLA blends containing these MCD-PLLAs. It was confirmed that the MCD-PLLA served as a nucleation agent for PLLA, inducing PLLA chains to form smaller and more uniform-sized crystallites compared with pure PLLA. The homogeneous fragmentation of these small and uniform-sized crystallites during tensile deformation consequently resulted in such a remarkable increase in E and UT. In contrast, the addition of MCD-PLLAs with more than 12 arms to PLLA decreased its E and UT mainly due to preferential crystallization by themselves.


multi-arm polymer methyl-β-cyclodextrin poly(l-lactide) nucleating agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. (1).
    R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Prog. Polym. Sci., 35, 338 (2010).CrossRefGoogle Scholar
  2. (2).
    L.-T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci., 33, 820 (2008).CrossRefGoogle Scholar
  3. (3).
    S. Saeidlou, M. A. Huneault, H. Li, and C. B. Park, Prog. Polym. Sci., 37, 1657 (2012).CrossRefGoogle Scholar
  4. (4).
    P. Saini, M. Arora, and M. N. V. R. Kumar, Adv. Drug Deliv. Rev., 107, 47 (2016).PubMedCrossRefGoogle Scholar
  5. (5).
    J. J. Koh, X. Zhang, and C. He, Int. J. Biol. Macromol., 109, 99 (2018).PubMedCrossRefGoogle Scholar
  6. (6).
    K. M. Seven, J. M. Cogen, and J. F. Gilchrist, Polym. Eng. Sci., 19, 288 (2011).Google Scholar
  7. (7).
    M. Rahman and C. S. Brazel, Prog. Polym. Sci., 29, 1223 (2004).CrossRefGoogle Scholar
  8. (8).
    M. G. A. Vieira, M. A. da Silva, L. O. dos Santos, and M. M. Beppu, Eur. Polym. J., 47, 254 (2011).CrossRefGoogle Scholar
  9. (9).
    A. Shakoor and N. L. Thomas, Polym. Eng. Sci., 54, 64 (2014).CrossRefGoogle Scholar
  10. (10).
    J.-Z. Liang, L. Zhou, C.-Y. Tang, and C.-P. Tsui, Compos. Part B Eng., 45, 1646 (2013).CrossRefGoogle Scholar
  11. (11).
    H. Li and M. A. Huneault, Polymer, 48, 6855 (2007).CrossRefGoogle Scholar
  12. (12).
    K. S. Kang, S. I. Lee, T. J. Lee, R. Narayan, and B. Y. Shin, Korean J. Chem. Eng., 25, 599 (2008).CrossRefGoogle Scholar
  13. (13).
    R. Wolf and B. L. Kaul, in Ullmann’s Polymers and Plastics: Products and Processes, B. Elvers, Ed., Wiley-VCH, Weinheim, 2016, Vol. 4, pp 572–573.Google Scholar
  14. (14).
    M. Bednarek, Prog. Polym. Sci., 58, 27 (2016).CrossRefGoogle Scholar
  15. (15).
    N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatrou, Chem. Rev., 101, 3747 (2001).PubMedCrossRefGoogle Scholar
  16. (16).
    I. A. Neumann, T. H. S. Flores-Sahagun, and A. M. Ribeiro, Polym. Test., 60, 84 (2017).CrossRefGoogle Scholar
  17. (17).
    T. Ouchi, S. Ichimura, and Y. Ohya, Polymer, 47, 429 (2006).CrossRefGoogle Scholar
  18. (18).
    T. Khamsarn, R. Supthanyakul, M. Matsumoto, and S. Chirachanchai, Polymer, 112, 87 (2017).CrossRefGoogle Scholar
  19. (19).
    Y. Phuphuak and S. Chirachanchai, Polymer, 54, 572 (2013).CrossRefGoogle Scholar
  20. (20).
    X. Bian, B. Zhang, Z. Sun., S. Xiang., G. Li, and X. Chen, Polym. Bull., 74, 245 (2017).CrossRefGoogle Scholar
  21. (21).
    Y. Zhao, X. Shuai, C. Chen, and F. Xi, Chem. Mater., 15, 2836 (2003).CrossRefGoogle Scholar
  22. (22).
    Y. Phuphuak, Y. Miao, P. Zinck, and S. Chirachanchai, Polymer, 54, 7058 (2013).CrossRefGoogle Scholar
  23. (23).
    Z. Jing, X. Shi, G. Zhang, J. Li, J. Li, L. Zhou, and H. Zhang, Polymer, 92, 210 (2016).CrossRefGoogle Scholar
  24. (24).
    B. V. K. J. Schmidt, M. Hetzer, H. Ritter, and C. Barner-Kowollik, Prog. Polym. Sci., 39, 235 (2014).CrossRefGoogle Scholar
  25. (25).
    T. Suzuki, A. Ei, Y. Takada, H. Uehara, T. Yamanobe, and K. Takahashi, Beilstein J. Org. Chem., 10, 2997 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  26. (26).
    Y. Gan, Y. Zhang, C. Xiao, C. Zhou, and Y. Zhao, Carbohydr. Res., 346, 389 (2011).PubMedCrossRefGoogle Scholar
  27. (27).
    Y. Feng, P. Lv, L. Jiang, P. Ma, M. Chen, W. Dong, and Y. Chen, Polym. Degrad. Stab., 146, 113 (2017).CrossRefGoogle Scholar
  28. (28).
    Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, and E. Baer, Polymer, 44, 5681 (2003).CrossRefGoogle Scholar
  29. (29).
    P. Cebe and S.-D. Hong, Polymer, 27, 1183 (1986).CrossRefGoogle Scholar
  30. (30).
    L. Wang, S. Li, P. Tang, J. Yan, K. Xu, and H. Li, Carbohydr. Polym., 129, 9 (2015).PubMedCrossRefGoogle Scholar
  31. (31).
    X. Zeng, B. Wu, L. Wu, J. Hu, Z. Bu, and B.-G. Li, Ind. Eng. Chem. Res., 53, 3550 (2014).CrossRefGoogle Scholar
  32. (32).
    N. López-Rodríguez and J. R. Sarasua, Polym. Eng. Sci., 53, 2073 (2013).Google Scholar
  33. (33).
    N. Ljungberg and B. Wesslén, Biomacromolecules, 6, 1789 (2005).PubMedCrossRefGoogle Scholar
  34. (34).
    Z. Bartczak and A. Galeski, Macromol. Symp., 294, 67 (2010).CrossRefGoogle Scholar
  35. (35).
    H. Tsuji, H. Takai, and S. K. Saha, Polymer, 47, 3826 (2006).CrossRefGoogle Scholar
  36. (36).
    L. Wang, X. Jing, H. Cheng, X. Hu, L. Yang, and Y. Huang, Ind. Eng. Chem. Res., 51, 10088 (2012).CrossRefGoogle Scholar
  37. (37).
    X. Shi, G. Zhang, T. V. Phuong, and A. Lazzeri, Molecules, 20, 1579 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  38. (38).
    X. Huang, Q. Ke, C. Kim, H. Zhong, P. Wei, G. Wang, F. Liu, and P. Jiang, Polym. Eng. Sci., 47, 1052 (2007).CrossRefGoogle Scholar
  39. (39).
    J. E. K. Schawe, F. Budde, and I. Alig, Polymer, 153, 587 (2018).CrossRefGoogle Scholar
  40. (40).
    M. L. Di Lorenzo, M. Cocca, and M. Malinconico, Thermochim. Acta, 522, 110 (2011).CrossRefGoogle Scholar
  41. (41).
    C. Thomas, R. Seguela, F. Detrez, V. Miri, and C. Vanmansart, Polymer, 50, 3714 (2009).CrossRefGoogle Scholar
  42. (42).
    A. Pawlak and A. Galeski, Macromolecules, 38, 9688 (2005).CrossRefGoogle Scholar
  43. (43).
    O. Redakcji, Polimery, 59, 531 (2014).Google Scholar
  44. (44).
    K. Tashiro, N. Kouno, H. Wang, and H. Tsuji, Macromolecules, 50, 8048 (2017).CrossRefGoogle Scholar
  45. (45).
    S. Jabbari-Farouji, J. Rottler, O. Lame, A. Makke, M. Perez, and J.-L. Barrat, ACS Macro Lett., 4, 147 (2015).CrossRefGoogle Scholar
  46. (46).
    D. L. Chinaglia, R. Gregorio Jr., J. C. Stefanello, R. A. R. Altafim, W. Wirges, F. Wang, and R. Gerhard, J. Appl. Polym. Sci., 116, 785 (2010).Google Scholar
  47. (47).
    L. Cui, Y. Wang, Y. Guo, Y. Liu, J. Zhao, C. Zhang, and P. Zhu, Polym. Adv. Technol., 27, 1301 (2016).CrossRefGoogle Scholar
  48. (48).
    J. Anakabe, A. M. Z. Huici, A. Eceiza, A. Arbelaiz, and L. Avérous, Polym. Bull., 74, 4857 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulKorea
  2. 2.Department of Chemical EngineeringThe University of SuwonGyeonggiKorea

Personalised recommendations