Amino-Ended Hyperbranched Polyamide Modified SBA-15 as Support for Highly Efficient Cobalt Fischer-Tropsch Synthesis Catalyst

  • Sufang ChenEmail author
  • Yanju Qiu
  • Xixi Xing
  • Cunwen Wang
  • Chengchao Liu
  • Yuhua Zhang
  • Jingping Hong
  • Jinlin Li
  • Daohong ZhangEmail author


Among the Fischer-Tropsch synthesis (FTS) catalysts, Cobalt catalysts are currently attracting a lot of research interests due to their high activity and high selectivity. But the dispersion and reducibility of cobalt catalysts with moderate interaction between cobalt and support are still a challenge. A novel amino-ended hyperbranched polyamide (AEHPA) was used to modify SBA-15 and then was applied as support for obtaining cobalt catalyst (15Co/SBA-15-N). The catalysts were characterized by XRD, TEM, XPS and H2-TPR techniques. The results showed that AEHPA doped mesoporous SBA-15 caused the generation of N species in the SBA-15 pore channels. The N-Co bonds resulted in the formation of highly-dispersed cobalt nanoparticles with uniform sizes inside the ordered mesopores of support. AEHPA doping was an effective way to modify the surface properties of the SBA-15 for immobilizing cobalt nanoparticles. Compared with the conventional 15Co/SBA-15 catalyst without doping AEHPA, the AEHPA doped 15Co/SBA-15-N catalyst showed improved cobalt dispersion and stabilized cobalt location, which led to much better reaction stability as well as C5+ selectivity.


hyperbranched polymers polyamide Fischer-Tropsch synthesis (FTS) cobalt catalysts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. (1).
    C. Liu, J. Hong, Y. Zhang, Y. Zhao, L. Wang, L. Wei, S. Chen, G. Wang, and J. Li, Fuel, 180, 777 (2016).CrossRefGoogle Scholar
  2. (2).
    X. Sun, S. Sartipi, F. Kapteijn, and J. Gascon, New J. Chem., 40, 4167 (2016).CrossRefGoogle Scholar
  3. (3).
    K. Cheng, V. Subramanian, A. Carvalho, V. V. Ordomsky, Y. Wang, and A. Y. Khodakov, J. Catal., 337, 260 (2016).CrossRefGoogle Scholar
  4. (4).
    T. Fu and Z. Li, Chem. Eng. Sci., 135, 3 (2015).CrossRefGoogle Scholar
  5. (5).
    C. Liu, Y. He, L. Wei, Y. Zhang, Y. Zhao, J. Hong, S. Chen, L. Wang, and J. Li, ACS Catal., 8, 1591 (2018).CrossRefGoogle Scholar
  6. (6).
    N. Fischer, B. Clapham, T. Feltes, and M. Claeys, ACS Catal., 5, 113 (2015).CrossRefGoogle Scholar
  7. (7).
    Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, and Y. Sun, J. Phys. Chem. C, 118, 268 (2014).CrossRefGoogle Scholar
  8. (8).
    T. Fu, R. Liu, J. Lv, and Z. Li, Fuel Process Technol., 122, 49 (2014).CrossRefGoogle Scholar
  9. (9).
    Y. Qiu, S. Chen, C. Wang, R. Lyu, D. Zhang, C. Liu, Y. Zhang, and J. Li, New J. Chem., 41, 14109 (2017).CrossRefGoogle Scholar
  10. (10).
    G. Prieto, A. Martínez, R. Murciano, and M. A. Arribas, Appl. Catal. A-Gen, 367, 146 (2009).CrossRefGoogle Scholar
  11. (11).
    M. Davari, S. Karimi, A. Tavasoli, and A. Karimi, Appl. Catal. A-Gen, 485, 133 (2014).CrossRefGoogle Scholar
  12. (12).
    A. T. Miah, S. K. Bharadwaj, and P. Saikia, Powder Technol, 315, 147 (2017).CrossRefGoogle Scholar
  13. (13).
    E. Escalera, M. A. Ballem, J. M. Córdoba, M.-L. Antti, and M. Odén, Powder Technol., 221, 359 (2012).CrossRefGoogle Scholar
  14. (14).
    S. Chen, Z. Xu, and D. Zhang, Chem. Eng. J., 343, 283 (2018).CrossRefGoogle Scholar
  15. (15).
    J. Tao, J. Xiong, C. Jiao, D. Zhang, H. Lin, and Y. Chen, ACS Sustain. Chem. Eng., 4, 60 (2016).CrossRefGoogle Scholar
  16. (16).
    D. Zhang, T. Liu, S. Chen, M. Miao, J. Cheng, S. Chen, D. Du, and J. Li, Macromol. Res., 24, 892 (2016).CrossRefGoogle Scholar
  17. (17).
    D. Zhang, T. Liu, S. Chen, M. Miao, J. Cheng, A. Zhang, and S. Chen, Mater. Chem. Phys., 184, 162 (2016).CrossRefGoogle Scholar
  18. (18).
    D. Zhao, J. Sun, Quanzhi Li, and G. D. Stucky, Chem. Mater., 12, 275 (2000).CrossRefGoogle Scholar
  19. (19).
    S. Chen, C. Wang, J. Li, Y. Zhang, J. Hong, X. Wen, and C. Liu, Catal. Sci. Technol., 5, 4985 (2015).CrossRefGoogle Scholar
  20. (20).
    S. Chen, J. Li, Y. Zhang, Y. Zhao, and J. Hong, Catal. Sci. Technol., 3, 1063 (2013).CrossRefGoogle Scholar
  21. (21).
    J. Du, J. Yan, J. Hong, Y. Zhang, S. Chen, and J. Li, RSC Adv., 5, 60534 (2015).CrossRefGoogle Scholar
  22. (22).
    J. Hong, J. Du, B. Wang, Y. Zhang, C. Liu, H. Xiong, F. Sun, S. Chen, and J. Li, ACS Catal., 8, 6177 (2018).CrossRefGoogle Scholar
  23. (23).
    L. Wang, W. Zhang, X. Zheng, Y. Chen, W. Wu, J. Qiu, X. Zhao, X. Zhao, Y. Dai, and J. Zeng, Nat. Energy., 2, 869 (2017).CrossRefGoogle Scholar
  24. (24).
    B. Qiu, C. Yang, W. Guo, Y. Xu, Z. Liang, D. Ma, and R. Zou, J. Mater. Chem. A, 5, 8081 (2017).CrossRefGoogle Scholar
  25. (25).
    S. Karimi, A. Tavasoli, Y. Mortazavi, and A. Karimi, Chem. Eng. Res. Des., 104, 713 (2015).CrossRefGoogle Scholar
  26. (26).
    X. Wang, W. Chen, T. Lin, J. Li, F. Yu, Y. An, Y. Dai, H. Wang, L. Zhong, and Y. Sun, Chinese J. Catalysis, 39, 1869 (2018).CrossRefGoogle Scholar
  27. (27).
    T. Fu and Z. Li, Catal. Commun., 47, 54 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Sufang Chen
    • 1
    Email author
  • Yanju Qiu
    • 1
    • 3
  • Xixi Xing
    • 1
  • Cunwen Wang
    • 1
  • Chengchao Liu
    • 2
  • Yuhua Zhang
    • 2
  • Jingping Hong
    • 2
  • Jinlin Li
    • 2
  • Daohong Zhang
    • 2
    Email author
  1. 1.Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and PharmacyWuhan Institute of TechnologyWuhan, HubeiP. R. China
  2. 2.Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for NationalitiesWuhan, HubeiP. R. China
  3. 3.Epoxy Aromatic Hydrocarbons DivisionSinpoec-SK(Wuhan) Petrochemical Company LimitedWuhan, HubeiP. R. China

Personalised recommendations