Preparation of Poly(phenylene sulfide)/Nylon 6 Grafted Graphene Oxide Nanocomposites with Enhanced Mechanical and Thermal Properties

  • Kyung Hwa Jung
  • Hee Joong Kim
  • Mun Hyeon Kim
  • Jong-Chan LeeEmail author


Poly(phenylene sulfide) (PPS) is an attractive polymer in engineering plastics because of its high mechanical strength and thermal stability. Herein, poly(phenylene sulfide)/nylon 6 grafted graphene oxide (PPS/NGO) nanocomposites were prepared by micro-compounding, where NGO is prepared via ring-opening polymerization of ε-caprolactam on the graphene oxide (GO), which has carboxylic acid groups that can act as an initiator. Since nylon 6 is known to be able to blend with commercial PPS, nylon 6 moiety in NGO can increase mechanical properties of PPS, especially by forming PPS/NGO nanocomposites with improved toughness. Moreover, graphene nanosheets can provide improved mechanical strength and thermal stability because of their mechanically reinforcing and thermal barrier effects. For example, if a PPS/NGO nanocomposite with 0.03 wt% of NGO was prepared, the tensile strength and elongation at break values increased by 32% and 30%, respectively, compared to neat PPS. Also, the thermal decomposition temperature for 5% weight loss increased from 481 to 488 °C, indicating the improved thermal stability. These improved properties can be attributed to the well-dispersed NGO in the PPS matrix, as confirmed by the morphological studies using SEM and EDS mapping.


poly(phenylene sulfide) graphene oxide engineering plastics nanocomposite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

13233_2020_8038_MOESM1_ESM.pdf (1.2 mb)
Supporting Information


  1. (1).
    W. Luo, Q. Liu, Y. Li, S. T. Zhou, H. W. Zou, and M. Liang, Compos. Part B: Eng., 91, 579 (2016).CrossRefGoogle Scholar
  2. (2).
    M. Rule, D. R. Fagerburg, J. J. Watkins, and P. B. Lawrence, Markromol. Chem., Rapid Commun., 12, 221 (1991).CrossRefGoogle Scholar
  3. (3).
    H. Wang, J. Zhao, Y. Zhu, Y. Meng, and Y. Zhu, J. Colloid Interface Sci., 402, 253 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  4. (4).
    B. Caglar, P. Fischer, P. Kauranen, M. Karttunen, and P. Eisner, J. Power Sources, 256, 88 (2014).CrossRefGoogle Scholar
  5. (5).
    S. L. Deng, Z. D. Lin, B. F. Xu, W. P. Qiu, K. Y. Liang, and W. Li, J. Therm. Anal. Calorim., 118, 197 (2014).CrossRefGoogle Scholar
  6. (6).
    S. Z. D. Cheng, Z. Q. Wu, and B. Wunderlich, Macromolecules, 20, 2802 (1987).CrossRefGoogle Scholar
  7. (7).
    J. W. Gu, Y. Q. Guo, X. T. Yang, C. B. Liang, W. C. Geng, L. Tang, N. Li, and Q. Y. Zhang, Compos. Part A: Appl. Sci. Manuf., 95, 267 (2017).CrossRefGoogle Scholar
  8. (8).
    J. Xing, Q. Q. Ni, B. Y. Deng, and Q. S. Liu, Compos. Sci. Technol., 134, 184 (2016).CrossRefGoogle Scholar
  9. (9).
    H. Zou, N. Ning, R. Su, Q. Zhang, and Q. Fu, J. Appl. Polym. Sci., 106, 2238 (2007).CrossRefGoogle Scholar
  10. (10).
    J. Choi, S. Lim, J. Kim, and C. R. Choe, Polymer, 38, 4401 (1997).CrossRefGoogle Scholar
  11. (11).
    Z. Chen, T. Li, Y. Yang, X. Liu, and R. Lv, Wear, 257, 696 (2004).CrossRefGoogle Scholar
  12. (12).
    J. Q. Pham, C. A. Mitchell, J. L. Bahr, J. M. Tour, R. Krishanamoorti, and P. F. Green, J. Polym. Sci. Part B: Polym. Phys., 41, 3339 (2003).CrossRefGoogle Scholar
  13. (13).
    M. Huskic and M. Zigon, Eur. Polym. J., 43, 4891 (2007).CrossRefGoogle Scholar
  14. (14).
    F. H. Gojny, M. H. G. Wichmann, U. Köpke, B. Fiedler, and K. Schulte, Compos. Sci. Technol., 64, 2363 (2004).CrossRefGoogle Scholar
  15. (15).
    C. Wu, X. Y. Huang, G. L. Wang, X. F. Wu, K. Yang, S. T. Li, and P. K. Jiang, J. Mater. Chem., 22, 7010 (2012).CrossRefGoogle Scholar
  16. (16).
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).PubMedCrossRefPubMedCentralGoogle Scholar
  17. (17).
    M. Y. Lim, H. J. Kim, S. J. Baek, K. Y. Kim, S. S. Lee, and J. C. Lee, Carbon, 77, 366 (2014).CrossRefGoogle Scholar
  18. (18).
    S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).CrossRefGoogle Scholar
  19. (19).
    K. Kim, J. Bae, M. Y. Lim, P. Heo, S. W. Choi, H. H. Kwon, and J. C. Lee, J. Membr. Sci., 525, 125 (2017).CrossRefGoogle Scholar
  20. (20).
    J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer, 52, 5 (2011).CrossRefGoogle Scholar
  21. (21).
    J. Xing, B. Deng, and Q. Liu, High Perform. Polym., 30, 519 (2017).CrossRefGoogle Scholar
  22. (22).
    C.-Y. Chang, S.-P. Ju, J.-W. Chang, S.-C. Huang, and H.-W. Yang, RSC Adv., 4, 26074 (2014).CrossRefGoogle Scholar
  23. (23).
    H. J. Kim, K. Choi, Y. Baek, D. G. Kim, J. Shim, J. Yoon, and J. C. Lee, ACS Appl. Mater. Interfaces, 6, 2819 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  24. (24).
    S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, Nano Lett., 9, 1593 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  25. (25).
    Y. F. Xu, Z. B. Liu, X. L. Zhang, Y. Wang, J. G. Tian, Y. Huang, Y. F. Ma, X. Y. Zhang, and Y. S. Chen, Adv. Mater. (Weinheim, Ger.), 21, 1275 (2009).CrossRefGoogle Scholar
  26. (26).
    T. Ko, K. Kim, M. Y. Lim, S. Y. Nam, T. H. Kim, S. K. Kim, and J. C. Lee, J. Mater. Chem. A, 3, 20595 (2015).CrossRefGoogle Scholar
  27. (27).
    M. Y. Lim, H. Shin, D. M. Shin, S. S. Lee, and J. C. Lee, Polymer, 84, 89 (2016).CrossRefGoogle Scholar
  28. (28).
    W. H. Liao, S. Y. Yang, J. Y. Wang, H. W. Tien, S. T. Hsiao, Y. S. Wang, S. M. Li, C. C. Ma, and Y. F. Wu, ACS Appl. Mater. Interfaces, 5, 869 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  29. (29).
    K. C. Mai, S. C. Zhang, Q. F. Gao, and H. M. Zeng, J. Appl. Polym. Sci., 78, 1579 (2000).CrossRefGoogle Scholar
  30. (30).
    S. F. Zhou, Q. X. Zhang, C. Q. Wu, and J. Huang, Mater. Des., 44, 493 (2013).CrossRefGoogle Scholar
  31. (31).
    Z. Xu and C. Gao, Macromolecules, 43, 6716 (2010).CrossRefGoogle Scholar
  32. (32).
    W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, Nat. Chem., 1, 403 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  33. (33).
    G. B. Gechele and A. Mattiussi, Eur. Polym. J., 1, 47 (1965).CrossRefGoogle Scholar
  34. (34).
    S. V. Levchik, G. Camino, L. Costa, and G. F. Levchik, Fire Mater., 19, 1 (1995).CrossRefGoogle Scholar
  35. (35).
    L. Y. Kan, Z. Xu, and C. Gao, Macromolecules, 44, 444 (2011).CrossRefGoogle Scholar
  36. (36).
    R. C. Chadwick, U. Khan, J. N. Coleman, and A. Adronov, Small, 9, 552 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  37. (37).
    V. H. Pham, T. T. Dang, S. H. Hur, E. J. Kim, and J. S. Chung, ACS Appl. Mater. Interfaces, 4, 2630 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  38. (38).
    Q. Liu, W. Luo, Y. Chen, H. Zou, and M. Liang, High Perform. Polym., 29, 889 (2016).CrossRefGoogle Scholar
  39. (39).
    J. Bian, Z. J. Wang, H. L. Lin, X. Zhou, W. Q. Xiao, and X. W. Zhao, Compos. Part A: Appl. Sci. Manuf., 97, 120 (2017).CrossRefGoogle Scholar
  40. (40).
    M. El Achaby, F.-E. Arrakhiz, S. Vaudreuil, A. el Kacem Qaiss, M. Bousmina, and O. Fassi-Fehri, Polym. Compos., 33, 733 (2012).CrossRefGoogle Scholar
  41. (41).
    M. Y. Lim, J. Oh, H. J. Kim, K. Y. Kim, S. S. Lee, and J. C. Lee, Eur. Polym. J., 69, 156 (2015).CrossRefGoogle Scholar
  42. (42).
    L. H. Perng, Polym. Degrad. Stab., 69, 323 (2000).CrossRefGoogle Scholar
  43. (43).
    J. Alam, M. Alam, M. Raja, Z. Abduljaleel, and L. A. Dass, Int. J. Mol. Sci., 15, 19924 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  44. (44).
    K. Yang, X. Huang, L. Fang, J. He, and P. Jiang, Nanoscale, 6, 14740 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  45. (45).
    J. A. Nairn, Polymer Matrix Composites, R. Talreja and J.-A. Manson, Eds., Elsevier Science, 2000.Google Scholar
  46. (46).
    S. Akhtar and J. L. White, Polym. Eng. Sci., 32, 690 (1992).CrossRefGoogle Scholar
  47. (47).
    A. Noël, J. Faucheu, J.-M. Chenal, J.-P. Viricelle, and E. Bourgeat-Lami, Polymer, 55, 5140 (2014).CrossRefGoogle Scholar
  48. (48).
    K. Nawaz, U. Khan, N. Ul-Haq, P. May, A. O’Neill, and J. N. Coleman, Carbon, 50, 4489 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Kyung Hwa Jung
    • 1
  • Hee Joong Kim
    • 1
  • Mun Hyeon Kim
    • 1
  • Jong-Chan Lee
    • 1
    Email author
  1. 1.School of Chemical and Biological Engineering and Institute of Chemical ProcessesSeoul National UniversitySeoulKorea

Personalised recommendations