Advertisement

Macromolecular Research

, Volume 27, Issue 11, pp 1167–1172 | Cite as

Intense Pulsed Light Sintered Core-Shell Nanoparticles for Organic Photovoltaic Devices

  • Soo Jung Yim
  • Ji Yeon Lee
  • Jae-Woong YuEmail author
Article
  • 32 Downloads

Abstract

A fast and low-cost fabrication process using intense pulsed light sintering of metal nanoparticles was studied. Silver, copper, and four different copper-silver core-shell alloy nanoparticles were synthesized. The composition and resistivity of the sintered metal electrodes were studied. The resistivity of the silver electrode formed through nanoparticle sintering was comparable to that of a conventional solution-processed silver electrode. The performance of the device prepared using the copper nanoparticles only was low due to the oxidation of copper in the air. The current density-voltage (J-V) characteristics of the devices fabricated using the synthesized core-shell nanoparticles revealed that the alloy ratio up to approximately 2 did neither affect the performances nor the lifetime of the devices. As the content of copper increased, the device performance decreased due to the oxidation of copper. Usage of the sintered metal alloy electrodes resulted in the reduction of cost by 33% compared with the conventional silver electrode.

Keywords

metal nanoparticles core-shell intense pulsed light optimum alloy ratio organic photovoltaic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Reference

  1. (1).
    J. Hou, W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, J. Am. Chem. Soc., 139, 7148 (2017).CrossRefGoogle Scholar
  2. (2).
    http://www.futuretechnology500.com: “Organic Solar Cells - New World Record Efficiency Reached”, Feb/16/2016.
  3. (3).
    C. J. M. Emmott, A. Urbina, and J. Nelson, Sol. Energy Mater. Sol. Cells, 97, 14 (2012).CrossRefGoogle Scholar
  4. (4).
    M. L. Bustamante, B. Hubler, G. Gaustad, and C. W. Babbit, Sol. Energy Mater. Sol. Cells, 156, 11 (2016).CrossRefGoogle Scholar
  5. (5).
    A. Gambhir, P. Sandwell, and J. Nelson, Sol. Energy Mater. Sol. Cells, 156, 49 (2016).CrossRefGoogle Scholar
  6. (6).
    C. A. Polyzoidis, C. Kapnopoulos, E. D. Mekeridis, L. Tzounis, S. Tsimikli, C. Gravalidis, A. Laskarakisa, and S. Logothetidis, Mater. Today: Proc., 3, 758 (2016).Google Scholar
  7. (7).
    N. Espinosa, R. García-Valverde, A. Urbina, F. Lenzmann, M. Manceau, D. Angmo, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 97, 3 (2012).CrossRefGoogle Scholar
  8. (8).
    B. Roth, G. A. R. Benatto, M. Corazza, R. R. Søndergaard, S. A. Gevorgyan, M. Jørgensen, and F. C. Krebs, Adv. Energy Mater., 5, 1401912 (2015).CrossRefGoogle Scholar
  9. (9).
    N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 95, 1293 (2012).CrossRefGoogle Scholar
  10. (10).
    H.-S. Kim, S. R. Dhage, D.-E. Shim, and H. T. Hahn, Appl. Phys. A, 97, 791 (2009).CrossRefGoogle Scholar
  11. (11).
    D. J. Lee, S. H. Park, S. Jang, H. S. Kim, J. H. Oh, and Y. W. Song, J. Micromech. Microeng., 21, 125023 (2011).CrossRefGoogle Scholar
  12. (12).
    H. Kang, E. Sowade, and R. R. Baumann, Appl. Mater. Interfaces, 6, 1682 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Advanced Materials Engineering for Information & ElectronicsKyung Hee UniversityGyeonggiKorea

Personalised recommendations