Carbon-Fiber-Reinforced Epoxy Resin with Sustainable Additives from Silk and Rice Husks for Improved Mode-I and Mode-II Interlaminar Fracture Toughness

  • Cuong Manh Vu
  • Quang-Vu BachEmail author
  • Huong Thi Vu
  • Dinh Duc Nguyen
  • Bui Xuan Kien
  • Soon Woong Chang


This paper presents an effective method for enhancing both the mode I (GIC) and mode II (GIIC) interlaminar fracture toughness of carbon fiber reinforced epoxy resin (CFRE). For precursor materials, silk fibroin nanofibers (nSF) and rice husk silica were prepared from sustainable resources. Nanocomposite samples were prepared using various loading ratios of the silica and nSF in epoxy resin (EP). Mechanical stirring and sonication techniques were used to prepare homogenous mixtures of silica and nSF in epoxy resin. Non-isothermal differential scanning calorimetry and the Kissinger equation were used to examine and calculate the cure kinetics and activation energy (Ea) of EP and the composite samples. The CFRE sample with hybrid fillers of nSF and silica at the ratio 0.2/20 (wt%/wt%) exhibited the highest GIC, and improved upon the mode-I and mode-II toughness of the pure-resin sample by 36.08% and 30.06%, respectively. Study of the fracture surfaces indicated that adding nSF and silica as fillers increases the energy required to fracture the CFRE.


electrospun silk nanofiber carbon fiber-reinforced epoxy resin rice husk silica resin fracture toughness (KIC


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. Meng, Y. Zeng, G. Zhu, J. Zhang, P. Chen, Y. Cheng, Z. Fang, and K. Guo, Polym. Chem. (2019).Google Scholar
  2. (2).
    S. Liu, Z. Fang, H. Yan, and H. Wang, RSC Adv., 6, 5288 (2016).CrossRefGoogle Scholar
  3. (3).
    C. M. Vu, D. D. Nguyen, L. H. Sinh, T. D. Pham, L. T. Pham, and H. J. Choi, Polym. Test., 61, 150 (2017).CrossRefGoogle Scholar
  4. (4).
    C. M. Vu, L. H. Sinh, D. D. Nguyen, H. V. Thi, and H. J. Choi, Polym. Test., 71, 200 (2018).CrossRefGoogle Scholar
  5. (5).
    A. M. Atta, A. M. El-Saeed, G. M. El-Mahdy, and H. A. Al-Lohedan, RSC Adv., 5, 101923 (2015).CrossRefGoogle Scholar
  6. (6).
    S. Wang, S. Ma, Q. Li, X. Xu, B. Wang, W. Yuan, S. Zhou, S. You, and J. Zhu, Green Chem., 21, 1484 (2019).CrossRefGoogle Scholar
  7. (7).
    H. Gu, C. Ma, J. Gu, J. Guo, X. Yan, J. Huang, Q. Zhang, and Z. Guo, J. Mater. Chem. C, 4, 5890 (2016).CrossRefGoogle Scholar
  8. (8).
    P. Slobodian, S.L. Pertegás, P. Riha, J. Matyas, R. Olejnik, R. Schledjewski, and M. Kovar, Compos. Sci. Technol., 156, 61 (2018).CrossRefGoogle Scholar
  9. (9).
    C. Xiao, Y. Tan, X. Wang, L. Gao, L. Wang, and Z. Qi, Chem. Phys. Lett., 703, 8 (2018).CrossRefGoogle Scholar
  10. (10).
    T. Li, M. Li, Y. Gu, S. Wang, Q. Li, and Z. Zhang, Compos. Sci. Technol., 166, 176 (2018).CrossRefGoogle Scholar
  11. (11).
    N. C. Das, T. K. Chaki, D. Khastgir, and A. Chakraborty, Adv. Polym. Technol., 20, 226 (2001).CrossRefGoogle Scholar
  12. (12).
    P. Bhawal, T. K. Das, S. Ganguly, S. Mondal, R. Ravindren, and N. C. Das, J. Polym. Sci. Appl., 1, 2 (2017).Google Scholar
  13. (13).
    W. Zhang, X. Deng, G. Sui, and X. Yang, Carbon, 145, 629 (2019).CrossRefGoogle Scholar
  14. (14).
    Z. Zhang, C. Wang, G. Huang, H. Liu, S. Yang, and A. Zhang, J. Hazard. Mater., 357, 73 (2018).CrossRefGoogle Scholar
  15. (15).
    N. Zheng, J. He, J. Gao, Y. Huang, F. Besenbacher, and M. Dong, Mater. Design, 145, 218 (2018).CrossRefGoogle Scholar
  16. (16).
    T. D. Pham, C. M. Vu, and H. J. Choi, Polym. Sci. Ser. A, 59, 437 (2017).CrossRefGoogle Scholar
  17. (17).
    C. M. Vu, T. V. Nguyen, L. T. Nguyen, and H. J. Choi, Polym. Bull., 73, 1373 (2016).CrossRefGoogle Scholar
  18. (18).
    C. M. Vu, L. T. Nguyen, T. V. Nguyen, and H. J. Choi, Polym. Korea, 38, 726 (2014).CrossRefGoogle Scholar
  19. (19).
    A. Ashori, S. Menbari, and R. Bahrami, J. Ind. Eng. Chem., 38, 37 (2016).CrossRefGoogle Scholar
  20. (20).
    W. Li, D. Xiang, L. Wang, E. H. Jones, C. Zhao, B. Wang, and Y. Li, RSC Adv., 8, 26910 (2018).CrossRefGoogle Scholar
  21. (21).
    N. Zheng, Y. Huang, H. Y. Liu, J. Gao, and Y. W. Mai, Compos. Sci. Technol., 140, 8 (2017).CrossRefGoogle Scholar
  22. (22).
    N. T. Kamar, L. T. Drzal, A. Lee, and P. Askeland, Polymer, 111, 36 (2017).CrossRefGoogle Scholar
  23. (23).
    M. D. R. Batista and L. T. Drzal, Compos. Sci. Technol., 164, 274 (2018).CrossRefGoogle Scholar
  24. (24).
    A. Klingler, A. Bajpai, and B. Wetzel, Eng. Fract. Mech., 203, 81 (2018).CrossRefGoogle Scholar
  25. (25).
    H. Shin, B. Kim, J. G. Han, M. Y. Lee, J. K. Park, and M. Cho, Compos. Sci. Technol., 145, 173 (2017).CrossRefGoogle Scholar
  26. (26).
    X. Zhao, Y. Li, W. Chen, S. Li, Y. Zhao, and S. Du, Compos. Sci. Technol., 171, 180 (2019).CrossRefGoogle Scholar
  27. (27).
    L. Wang, Y. Tan, H. Wang, L. Gao, and C. Xiao, Chem. Phys. Lett., 699, 14 (2018).CrossRefGoogle Scholar
  28. (28).
    N. T. Kamar and L. T. Drzal, Polymer, 92, 114 (2016).CrossRefGoogle Scholar
  29. (29).
    Y. Zhao, Z. K. Chen, Y. Liu, H. M. Xiao, Q. P. Feng, and S. Y. Fu, Compos. A Appl. Sci. Manufact., 55, 178 (2013).CrossRefGoogle Scholar
  30. (30).
    D. Quan, J. L. Urdániz, and A. Ivanković, Mater. Design, 143, 81 (2018).CrossRefGoogle Scholar
  31. (31).
    J. Cha, G. H. Jun, J. K. Park, J. C. Kim, H. J. Ryu, and S. H. Hong, Compos. B Eng., 129, 169 (2017).CrossRefGoogle Scholar
  32. (32).
    N. C. Adak, S. Chhetri, T. Kuila, N. C. Murmu, P. Samanta, and J. H. Lee, Compos. B Eng., 149, 22 (2018).CrossRefGoogle Scholar
  33. (33).
    W. H. Park, L. Jeong, D. I. Yoo, and S. Hudson, Polymer, 45, 7151 (2004).CrossRefGoogle Scholar
  34. (34).
    S. A. Cervantes, A. Pagán, J. G. Martínez, A. B. Esclapez, T. F. Otero, L. M. Olmo, J. I. Paredes, and J. L. Cenis, Mater. Sci. Eng. C., 79, 315 (2017).CrossRefGoogle Scholar
  35. (35).
    C. M. Vu and H. J. Choi, J. Polym. Plast. Tech. Eng., 55, 1048 (2016).CrossRefGoogle Scholar
  36. (36).
    T. K. Das, S. Ganguly, P. Bhawal, S. Remanan, S. Ghosh, and N. C. Das, J. Environ. Chem. Eng., 6, 6989 (2018).CrossRefGoogle Scholar
  37. (37).
    W. Han, S. Chen, J. Campbell, X. Zhang, and Y. Tang, Mater. Chem. Phys., 177, 147 (2016).CrossRefGoogle Scholar
  38. (38).
    H. Y. Liu, G. T. Wang, Y. W. Mai, and Y. Zeng, Compos. B Eng., 42, 2170 (2011).CrossRefGoogle Scholar
  39. (39).
    J. L. Tsai, B. H. Huang, and Y. L. Cheng, Proce. Eng., 14, 1982 (2011).CrossRefGoogle Scholar
  40. (40).
    S. H. Kwon, I. H. Park, C. M. Vu, and H. J Choi, J. Taiwan. Inst. Chem. Eng., 95, 432 (2018).CrossRefGoogle Scholar
  41. (41).
    T. D. Pham, C. M. Vu, and H. J. Choi, Polym. Sci. Ser. A, 59, 437 (2017).CrossRefGoogle Scholar
  42. (42).
    H. E. Kissinger, Anal. Chem., 29, 1702 (1957).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Cuong Manh Vu
    • 1
  • Quang-Vu Bach
    • 2
    Email author
  • Huong Thi Vu
    • 3
  • Dinh Duc Nguyen
    • 4
  • Bui Xuan Kien
    • 5
  • Soon Woong Chang
    • 4
  1. 1.Center for Advanced Chemistry, Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  2. 2.Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.AQP research and control pharmaceuticals Joint Stock Company (AQP Pharma J.S.C) Dong DaHanoiVietnam
  4. 4.Department of Environmental Energy & EngineeringKyonggi UniversitySuwonKorea
  5. 5.Faculty of Natural SciencesElectric power UniversityHanoiVietnam

Personalised recommendations