Improvement of Biodegradability and Biocompatibility of Electrospun Scaffolds of Poly(butylene terephthalate) by Incorporation of Sebacate Units

  • Nina Heidarzadeh
  • Luis J. del ValleEmail author
  • Lourdes Franco
  • Jordi PuiggalíEmail author


Incorporation of aliphatic units to poly(butylene terephthalate) (PBT) gives rise to biodegradable copolymers with tunable properties (e.g., degradability), depending on the selected comonomer and the specific composition. Specifically, a low molecular weight poly(butylene sebacate-co-terephthalate) (PBSeT) with a high ratio of aliphatic sebacate units (i.e., 70 mol-% with respect to the total dicarboxylate content) has been employed in this work to get new electrospun biodegradable scaffolds. Appropriate electrospinning conditions have been found despite the limited copolymer molecular weight. In addition, PBSeT has been employed to improve biocompatibility and biodegradability of scaffolds based on the PBT homopolymer. Scaffolds with different properties have been prepared following two strategies: Electrospinning of single solutions of PBT and PBSeT mixtures and co-electrospinning of independent PBT and PBSeT solutions. Characterization involved spectroscopic (FTIR, NMR), calorimetric (DSC, TGA) and surface hydrophobicity analyses. Hydrolytic and enzymatic degradation studies demonstrated the success of the approach due to the susceptibility of the PBSeT component towards the enzymatic attack with lipases from Pseudomonas cepacia and even towards high temperature hydrolysis.


poly(butylene terephthalate) poly(butylene sebacate) aliphatic/aromatic copolymers electrospinning biodegradability biocompatibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

13233_2020_8009_MOESM1_ESM.pdf (3.8 mb)
Supporting Information


  1. (1).
    Z. Zhang, F. Zhang, X. Jiang, Y. Liu, Z. Guo, and J. Leng, Fiber Polym., 15, 2290 (2014).CrossRefGoogle Scholar
  2. (2).
    R. Scaffaro, F. Lopresti, A. Maio, L. Botta, S. Rigogliuso, and G. Ghersi, Compos. Part A-Appl. S., 92, 97 (2017).CrossRefGoogle Scholar
  3. (3).
    R. Scaffaro, A. Maio, F. Lopresti, and L. Botta, Polymers, 9, 76 (2017).PubMedCentralCrossRefGoogle Scholar
  4. (4).
    M. Leno, R. Su, J. Clarke, Y. Lou, and E. Mele, Eur. Polym. J., 87, 241 (2017).CrossRefGoogle Scholar
  5. (5).
    J. Zhu, S. Wei, D. Rutman, N. Haldolaarachchige, D. P. Young, and Z. Guo, Polymer, 52, 2947 (2011).CrossRefGoogle Scholar
  6. (6).
    X. Hu, S. Liu, G. Zhou, Y. Huang, Z. Xie, and X. Jing, J. Control. Release, 185, 12 (2014).PubMedCrossRefPubMedCentralGoogle Scholar
  7. (7).
    Y.-E. Miao, S. He, Y. Zhong, Z. Yang, W. W. Tjiu, and T. Liu, Electrochim. Acta, 99, 117 (2013).CrossRefGoogle Scholar
  8. (8).
    M. Gorji, A. Jeddi, and A. A. Gharehaghaji, J. Appl. Polym. Sci., 125, 4135 (2012).CrossRefGoogle Scholar
  9. (9).
    S. Zhang, W. S. Shim, and J. Kim, Mater. Design, 30, 3659 (2009).CrossRefGoogle Scholar
  10. (10).
    P. Tahira, S. A. Arvidson, C. D. Saquing, S. S. Shah, and S. A. Khan, Langmuir, 28, 5834 (2012).CrossRefGoogle Scholar
  11. (11).
    R. A. Caruso, J. H. Schattka, and A. Greiner, Adv. Mater., 13, 1577 (2001).CrossRefGoogle Scholar
  12. (12).
    J. Yoon, Y.-S. Jung, and J.-M. Kim, Adv. Funct. Mater., 19, 209 (2009).CrossRefGoogle Scholar
  13. (13).
    Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z.-M. Huang, J. Biomed. Mater. Res. B, 72, 156 (2005).CrossRefGoogle Scholar
  14. (14).
    E. Llorens, L. J. del Valle, R. Ferrán, A. Rodríguez-Galán, and J. Puiggalí, J. Polym. Res., 21, 360 (2014).CrossRefGoogle Scholar
  15. (15).
    E. Llorens, S. Bellmunt, L. J. del Valle, and J. Puiggalí, J. Polym. Res., 21, 603 (2014).CrossRefGoogle Scholar
  16. (16).
    R. Scaffaro, F. Lopresti, and L. Botta, Eur. Polym. J., 96, 266 (2017).CrossRefGoogle Scholar
  17. (17).
    M.-X. Ma, Q. Liu, C. Ye, B. Grottkau, B. Guo, and Y.-F. Song, BioMed Res. Int., Article ID 9251806 (2017).Google Scholar
  18. (18).
    S. Danti, C. Mota, D. D’alessandro, L. Trombi, C. Ricci, S. L. Redmond, A. De Vito, R. Pini, R. J. Dilley, L. Moroni, and S. Berrettini, Hearing Balance Commun., 13, 133 (2015).CrossRefGoogle Scholar
  19. (19).
    B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, Polymer, 45, 1895 (2004).CrossRefGoogle Scholar
  20. (20).
    G. Mingbo, K. Wang, W. Li, C. Qin, J.-J. Wang, and L. Dai, Fiber Polym., 12, 65 (2011).CrossRefGoogle Scholar
  21. (21).
    E. Llorens, H. Ibañez, L. J. del Valle, and J. Puiggalí, Mat. Sci. Eng. C, 49, 472 (2015).CrossRefGoogle Scholar
  22. (22).
    Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, Adv. Mater., 15, 1929 (2003).CrossRefGoogle Scholar
  23. (23).
    Y. Zhang, Z.-M. Huang, X. Xu, C. T. Lim, and S. Ramakrishna, Chem. Mater., 16, 3406 (2004).CrossRefGoogle Scholar
  24. (24).
    X.-F. Wu, A. Rahman, Z. Zhou, D. D. Pelot, S. Sinha-Ray, B. Chen, S. Payne, and A. L. Yarin, J. Appl. Polym. Sci., 129, 1383 (2013).CrossRefGoogle Scholar
  25. (25).
    P. T. Bertuoli, J. Ordoño, E. Armelin, S. Pérez-Amodio, A. F. Baldissera, C. A. Ferreira, J. Puiggalí, E. Engel, L. J. del Valle, and C. Alemán, ACS Omega, 4, 3660 (2019).PubMedPubMedCentralCrossRefGoogle Scholar
  26. (26).
    N. Heidarzadeh, M. Rafizadeh, F. A. Taromi, L. J. del Valle, L. Franco, and J. Puiggalí, J. Polym., 8, 253 (2016).Google Scholar
  27. (27).
    N. Heidarzadeh, M. Rafizadeh, F. A. Taromi, L. J. del Valle, L. Franco, and J. Puiggalí, Polym. Degrad. Stab., 135, 18 (2017).CrossRefGoogle Scholar
  28. (28).
    S. Guo, Q. Ke, H. Wang, X. Jin, and Y. Li, J. Appl. Polym. Sci., 128, 3652 (2013).CrossRefGoogle Scholar
  29. (29).
    O. Saligheh, M. Forouharshad, R. Arasteh, R. Eslami-Farsani, R. Khajavi, and B. Y. Roudbari, J. Polym. Res., 20, 65 (2013).CrossRefGoogle Scholar
  30. (30).
    J. Malda, T. B. F. Woodfield, F. van der Vloodt, C. Wilson, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle, Biomaterials, 26, 63 (2005).PubMedCrossRefPubMedCentralGoogle Scholar
  31. (31).
    L. Moroni, J. R. de Wijn, and C. A. van Blitterswijk, J. Biomed. Mater. Res. A, 75, 957 (2005).PubMedCrossRefPubMedCentralGoogle Scholar
  32. (32).
    H. Qingpu, D. W. Grijpma, and J. Feijen, Biomaterials, 24, 1937 (2003).CrossRefGoogle Scholar
  33. (33).
    C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, Polymer, 48, 3306 (2007).CrossRefGoogle Scholar
  34. (34).
    S. Chen, W. Yu, and J. E. Spruiell, J. Appl. Polym. Sci., 34, 1477 (1987).CrossRefGoogle Scholar
  35. (35).
    S. Kadhiravan, Y. Y. Fang, D. Y. Chou, S. S. Sparks, J. Hibbert, and C. J. Ellison, ACS Macro Lett., 1, 960 (2012).CrossRefGoogle Scholar
  36. (36).
    E. S. Cozza, Q. Ma, O. Monticelli, and P. Cebe, Eur. Polym. J., 49, 33 (2013).CrossRefGoogle Scholar
  37. (37).
    L. H. Catalani, G. Collins, and M. Jaffe, Macromolecules, 40, 1693 (2007).CrossRefGoogle Scholar
  38. (38).
    T. B. F. Woodfield, J. Malda, J. de Wijn, F. Peters, J. Riesle, and C. A. van Blitterswijk, Biomaterials, 25, 4149 (2004).PubMedCrossRefPubMedCentralGoogle Scholar
  39. (39).
    Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 21, 117 (2000).CrossRefGoogle Scholar
  40. (40).
    S. J. Hollister, Nat. Mater., 4, 518 (2005).PubMedCrossRefPubMedCentralGoogle Scholar
  41. (41).
    C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden, and J. A. Cooper, Annu. Rev. Biomed. Eng., 1, 19 (1999).PubMedCrossRefPubMedCentralGoogle Scholar
  42. (42).
    E. J. Kim, G. D. Yeo, C. M. Pai, and I. K. Kang, J. Biomed. Mater. Res. B, 90, 849 (2009).CrossRefGoogle Scholar
  43. (43).
    V. Tserki, J. Philippou, and C. Panayiotou, P. I. Mech. Eng. N., 220, 71 (2006).Google Scholar
  44. (44).
    E. H. Jeong, S. S. Im, and J. H. Youk, Polymer, 46, 9538 (2005).CrossRefGoogle Scholar
  45. (45).
    F. Huang, Q. Wei, J. Wang, Y. Cai, and Y. Huang, e-Polymers, 8, 1 (2008).Google Scholar
  46. (46).
    L. J. del Valle, R. Camps, A. Díaz, L. Franco, A. Rodríguez-Galán, and J. Puiggalí, J. Polym. Res., 18, 1903 (2011).CrossRefGoogle Scholar
  47. (47).
    S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, Polymer, 46, 3372 (2005).CrossRefGoogle Scholar
  48. (48).
    R. M. Lum, J. Polym. Sci. A1, 17, 203 (1979).Google Scholar
  49. (49).
    F. Samperi, C. Puglisi, R. Alicata, and G. Montaudo, Polym. Degrad. Stab., 83, 11 (2004).CrossRefGoogle Scholar
  50. (50).
    T. Koshiduka, T. Ohkawa, and K. Takeda, Polym. Degrad. Stab., 79, 1 (2003).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Dupuis HallQueen’s UniversityKingstonCanada
  2. 2.Chemical Engineering DepartmentEscola d’Enginyeria de Barcelona Est-EEBEBarcelonaSpain
  3. 3.Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBEBarcelonaSpain

Personalised recommendations