Advertisement

Macromolecular Research

, Volume 27, Issue 11, pp 1117–1123 | Cite as

Enhancement of Thermal Conductivity of Poly(methylmethacrylate) Composites at Low Loading of Copper Nanowires

  • Nhat Anh Thi Thieu
  • Minh Canh Vu
  • Eui Sung Lee
  • Vu Chi Doan
  • Sung-Ryong KimEmail author
Article
  • 60 Downloads

Abstract

We report the synthesis of copper nanowires (CuNWs) and the enhanced thermal conductivity of poly(methylmethacrylate) (PMMA) composites at low-loading fractions of CuNW. The scanning electron microscope, X-ray diffractometer, thermal diffusivity meter, high-resistance meter, universal testing machine, and thermogravimetric analyzer were used to investigate the properties of CuNW/PMMA composites. The elongation strain to failure, toughness, and thermal stability of the PMMA composites significantly increased with increasing contents of CuNW. The CuNW/PMMA composites showed the thermal conductivity and volume resistivity of 0.85 W/mK and 7×1010Ω·m, respectively, at 2.0 wt% of CuNW. The significant improvement of thermal conductivity is attributed to the well-dispersed CuNWs in the PMMA matrix and the high aspect ratio of CuNWs. The experimental results of thermal conductivity fitted well with the Agari model.

Keywords

Cu nanowires thermal conductivity high aspect ratio toughness volume resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

13233_2019_7155_MOESM1_ESM.pdf (896 kb)
Supporting Information

References

  1. (1).
    V. C. Doan, M. C. Vu, Md. A. Islam, and S. R. Kim, J. Appl. Polym. Sci., 136, 47377 (2018).Google Scholar
  2. (2).
    K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, and K. Hata, Adv. Mater., 26, 5857 (2014).PubMedGoogle Scholar
  3. (3).
    L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu, and T. J. Goh, Thermo. Acta, 430, 155 (2005).Google Scholar
  4. (4).
    M. C. Vu, T. S. Tran, Y. H. Bae, M. J. Yu, V. C. Doan, J. H. Lee, T. K. An, and S.-R. Kim, Macroml. Res., 26, 521 (2017).Google Scholar
  5. (5).
    Y. Jiang, M. Li, C. Zhen, Z. Xue, X. Xie, X. Zhou, and Y.-W. Mai, Compos. Sci. Technol., 165, 206 (2018).Google Scholar
  6. (6).
    Y.-H. Bae, M.-J. Yu, M. C. Vu, W. K. Choi, and S.-R. Kim, Compos. Sci. Technol., 155, 144 (2018).Google Scholar
  7. (7).
    M. C. Vu, G. D. Park, Y. H. Bae, and S. R. Kim, Polym. Korea, 40, 804 (2016).Google Scholar
  8. (8).
    C. Yuan, B. Duan, L. Li, B. Xie, M. Huang, and X. Luo, ACS Appl. Mater. Interfaces, 7, 13000 (2015).PubMedGoogle Scholar
  9. (9).
    M. C. Vu, Y. H. Bae, M. J. Yu, Md. A. Islam, and S.-R. Kim, Compos. Part A, 109, 55 (2018).Google Scholar
  10. (10).
    M. C. Vu, G. D. Park, Y. H. Park, M. J. Yu, T. G. An, S. G. Lee, and S. R. Kim, Macromol. Res., 24, 1070 (2016).Google Scholar
  11. (11).
    K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky, and T. Borca-Tasciuc, J. Appl. Phys., 111, 104310 (2012).Google Scholar
  12. (12).
    K. Ahn, K. Kim, and J. Kim, Polymer, 76, 313 (2015).Google Scholar
  13. (13).
    J. Zhu, Y. Zhang, X. Sun, and L. Guo, RSC Adv., 4, 30610 (2014).Google Scholar
  14. (14).
    S. Wang, Y. Cheng, R. Wang, J. Sun, and L. Gao, ACS Appl. Mater. Interfaces, 6, 6481 (2014).PubMedGoogle Scholar
  15. (15).
    H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, Nano Lett., 10, 4242 (2010).PubMedGoogle Scholar
  16. (16).
    C. F. Monson and A. T. Woolley, Nano Lett., 3, 359 (2003).Google Scholar
  17. (17).
    K. Kim, K. Ahn, H. Ju, and J. Kim, Ind. Eng. Chem. Res., 55, 2713 (2016).Google Scholar
  18. (18).
    L. Zhang, J. Yin, W. Yu, M. Wang, and H. Xie, Nanoscale Res. Lett., 12, 462 (2017).PubMedPubMedCentralGoogle Scholar
  19. (19).
    H. Xiang, T. Guo, M. Xu, H. Lu, S. Liu, and G. Yu, ACS Appl. Mater. Interfaces, 1, 3754 (2018).Google Scholar
  20. (20).
    Y. Chang, M. L. Lye, and H. C. Zeng, Langmuir, 21, 3746 (2005).PubMedGoogle Scholar
  21. (21).
    M. Tan and M. D. Balela, MATEC Web of Conferences, 27, 03003 (2015).Google Scholar
  22. (22).
    A. R. Rathmell, S. M. Bergin, Y.-L. Hua, Z.-Y. Li, and B. J. Wiley, Adv. Mater., 22, 3558 (2010).PubMedGoogle Scholar
  23. (23).
    A. R. Rathmell and B. J. Wiley, Adv. Mater., 23, 4798 (2011).PubMedGoogle Scholar
  24. (24).
    M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie, and Y. Xia, Angew. Chem. Int. Ed., 50, 10560 (2011).Google Scholar
  25. (25).
    D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li, and Y. Lu, J. Am. Chem. Soc., 134, 14283 (2012).PubMedGoogle Scholar
  26. (26).
    Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2, 165 (2002).Google Scholar
  27. (27).
    F. Qian, P. C. Lan, T. Olson, C. Zhu, E. B. Douss, C. M. Spadaccini, and Y.-J. Han, Chem. Commun., 52, 11627 (2016).Google Scholar
  28. (28).
    Y. Zhang, J. Guo, D. Xu, Y. Sun, and F. Yan, Langmuir, 34, 3884 (2018).PubMedGoogle Scholar
  29. (29).
    G. Han, S. Huan, J. Han, Z. Zhang, and Q. Wu, Materials, 7, 16 (2014).Google Scholar
  30. (30).
    D. V. R. Kumar, I. Kim, Z. Zhong, K. Kim, D. Lee, and J. Moon, Phys. Chem. Chem. Phys., 16, 22107 (2014).PubMedGoogle Scholar
  31. (31).
    W. Chen, Z. Wang, C. Zhi, and W. Zhang, Compos. Sci. Technol., 130, 63 (2016).Google Scholar
  32. (32).
    A. Lazarenko, L. Vovchenko, Y. Prylutskyy, L. Matzuy, U. Ritter, and P. Scharff, Materialwiss. Werkst., 40, 268 (2009).Google Scholar
  33. (33).
    C. Zhang, A. Li, Y.-H. Zhao, S.-L. Bai, and Y.-F. Zhang, Compos. Part B, 135, 201 (2018).Google Scholar
  34. (34).
    J. P. Angle, Z. Wang, C. Dames, and M. Mecartney, J. Am. Ceram. Soc., 96, 2935 (2013).Google Scholar
  35. (35).
    J. L. Zeng, F. R. Zhu, S. B. Yu, L. Zhu, Z. Cao, L. X. Sun, G.-R. Deng, W.-P. Yan, and L. Zhang, Sol. Energ. Mater. Sol. C., 105, 174 (2012).Google Scholar
  36. (36).
    A. Rai and A. L. Moore, Com. Sci. Technol., 144, 70 (2017).Google Scholar
  37. (37).
    L. Riviere, A. Lonjon, E. Dantras, C. Lacabanne, P. Olivier, and N. R. Gleizes, Eur. Polym. J., 85, 115 (2016).Google Scholar
  38. (38).
    S. A. H. Pour, B. Pourabbas, and M. S. Hosseini, Mater. Chem. Phys., 143, 830 (2014).Google Scholar
  39. (39).
    H. Yuan, Y. Wang, T. Li, P. Ma, S. Zhang, M. Du, M. Chen, W. Dong, and W. Ming, Compos. Sci. Technol., 164, 153 (2018).Google Scholar
  40. (40).
    A. Singhal, K. A. Dubey, Y. K. Bhardwaj, D. Jain, S. Choudhury, and A. K. Tyagi, RSC Adv., 3, 20913 (2013).Google Scholar
  41. (41).
    N. H. Mohd Hirmizi, M. A. Bakar, W. L. Tan, N. H. H. Abu Bakar, J. Ismail, and C. H. See, J. Nanomater., 2012, 1 (2012).Google Scholar
  42. (42).
    S. Y. Yeo, W. L. Tan, M. Abu Bakar, and J. Ismail, Polym. Degrad. Stab., 95, 1299 (2010).Google Scholar
  43. (43).
    L. M. Gorghiu, S. Jipa, T. Zaharescu, R. Setnescu, and I. Mihalcea, Polym. Degrad. Stab., 84, 7 (2004).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Nhat Anh Thi Thieu
    • 1
  • Minh Canh Vu
    • 1
  • Eui Sung Lee
    • 1
  • Vu Chi Doan
    • 1
  • Sung-Ryong Kim
    • 1
    Email author
  1. 1.Department of Polymer Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations