Enhancement of Thermal Conductivity of Poly(methylmethacrylate) Composites at Low Loading of Copper Nanowires
- 60 Downloads
Abstract
We report the synthesis of copper nanowires (CuNWs) and the enhanced thermal conductivity of poly(methylmethacrylate) (PMMA) composites at low-loading fractions of CuNW. The scanning electron microscope, X-ray diffractometer, thermal diffusivity meter, high-resistance meter, universal testing machine, and thermogravimetric analyzer were used to investigate the properties of CuNW/PMMA composites. The elongation strain to failure, toughness, and thermal stability of the PMMA composites significantly increased with increasing contents of CuNW. The CuNW/PMMA composites showed the thermal conductivity and volume resistivity of 0.85 W/mK and 7×1010Ω·m, respectively, at 2.0 wt% of CuNW. The significant improvement of thermal conductivity is attributed to the well-dispersed CuNWs in the PMMA matrix and the high aspect ratio of CuNWs. The experimental results of thermal conductivity fitted well with the Agari model.
Keywords
Cu nanowires thermal conductivity high aspect ratio toughness volume resistivityPreview
Unable to display preview. Download preview PDF.
Notes
Supplementary material
References
- (1).V. C. Doan, M. C. Vu, Md. A. Islam, and S. R. Kim, J. Appl. Polym. Sci., 136, 47377 (2018).Google Scholar
- (2).K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, and K. Hata, Adv. Mater., 26, 5857 (2014).PubMedGoogle Scholar
- (3).L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu, and T. J. Goh, Thermo. Acta, 430, 155 (2005).Google Scholar
- (4).M. C. Vu, T. S. Tran, Y. H. Bae, M. J. Yu, V. C. Doan, J. H. Lee, T. K. An, and S.-R. Kim, Macroml. Res., 26, 521 (2017).Google Scholar
- (5).Y. Jiang, M. Li, C. Zhen, Z. Xue, X. Xie, X. Zhou, and Y.-W. Mai, Compos. Sci. Technol., 165, 206 (2018).Google Scholar
- (6).Y.-H. Bae, M.-J. Yu, M. C. Vu, W. K. Choi, and S.-R. Kim, Compos. Sci. Technol., 155, 144 (2018).Google Scholar
- (7).M. C. Vu, G. D. Park, Y. H. Bae, and S. R. Kim, Polym. Korea, 40, 804 (2016).Google Scholar
- (8).C. Yuan, B. Duan, L. Li, B. Xie, M. Huang, and X. Luo, ACS Appl. Mater. Interfaces, 7, 13000 (2015).PubMedGoogle Scholar
- (9).M. C. Vu, Y. H. Bae, M. J. Yu, Md. A. Islam, and S.-R. Kim, Compos. Part A, 109, 55 (2018).Google Scholar
- (10).M. C. Vu, G. D. Park, Y. H. Park, M. J. Yu, T. G. An, S. G. Lee, and S. R. Kim, Macromol. Res., 24, 1070 (2016).Google Scholar
- (11).K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky, and T. Borca-Tasciuc, J. Appl. Phys., 111, 104310 (2012).Google Scholar
- (12).K. Ahn, K. Kim, and J. Kim, Polymer, 76, 313 (2015).Google Scholar
- (13).J. Zhu, Y. Zhang, X. Sun, and L. Guo, RSC Adv., 4, 30610 (2014).Google Scholar
- (14).S. Wang, Y. Cheng, R. Wang, J. Sun, and L. Gao, ACS Appl. Mater. Interfaces, 6, 6481 (2014).PubMedGoogle Scholar
- (15).H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, Nano Lett., 10, 4242 (2010).PubMedGoogle Scholar
- (16).C. F. Monson and A. T. Woolley, Nano Lett., 3, 359 (2003).Google Scholar
- (17).K. Kim, K. Ahn, H. Ju, and J. Kim, Ind. Eng. Chem. Res., 55, 2713 (2016).Google Scholar
- (18).L. Zhang, J. Yin, W. Yu, M. Wang, and H. Xie, Nanoscale Res. Lett., 12, 462 (2017).PubMedPubMedCentralGoogle Scholar
- (19).H. Xiang, T. Guo, M. Xu, H. Lu, S. Liu, and G. Yu, ACS Appl. Mater. Interfaces, 1, 3754 (2018).Google Scholar
- (20).Y. Chang, M. L. Lye, and H. C. Zeng, Langmuir, 21, 3746 (2005).PubMedGoogle Scholar
- (21).M. Tan and M. D. Balela, MATEC Web of Conferences, 27, 03003 (2015).Google Scholar
- (22).A. R. Rathmell, S. M. Bergin, Y.-L. Hua, Z.-Y. Li, and B. J. Wiley, Adv. Mater., 22, 3558 (2010).PubMedGoogle Scholar
- (23).A. R. Rathmell and B. J. Wiley, Adv. Mater., 23, 4798 (2011).PubMedGoogle Scholar
- (24).M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie, and Y. Xia, Angew. Chem. Int. Ed., 50, 10560 (2011).Google Scholar
- (25).D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li, and Y. Lu, J. Am. Chem. Soc., 134, 14283 (2012).PubMedGoogle Scholar
- (26).Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2, 165 (2002).Google Scholar
- (27).F. Qian, P. C. Lan, T. Olson, C. Zhu, E. B. Douss, C. M. Spadaccini, and Y.-J. Han, Chem. Commun., 52, 11627 (2016).Google Scholar
- (28).Y. Zhang, J. Guo, D. Xu, Y. Sun, and F. Yan, Langmuir, 34, 3884 (2018).PubMedGoogle Scholar
- (29).G. Han, S. Huan, J. Han, Z. Zhang, and Q. Wu, Materials, 7, 16 (2014).Google Scholar
- (30).D. V. R. Kumar, I. Kim, Z. Zhong, K. Kim, D. Lee, and J. Moon, Phys. Chem. Chem. Phys., 16, 22107 (2014).PubMedGoogle Scholar
- (31).W. Chen, Z. Wang, C. Zhi, and W. Zhang, Compos. Sci. Technol., 130, 63 (2016).Google Scholar
- (32).A. Lazarenko, L. Vovchenko, Y. Prylutskyy, L. Matzuy, U. Ritter, and P. Scharff, Materialwiss. Werkst., 40, 268 (2009).Google Scholar
- (33).C. Zhang, A. Li, Y.-H. Zhao, S.-L. Bai, and Y.-F. Zhang, Compos. Part B, 135, 201 (2018).Google Scholar
- (34).J. P. Angle, Z. Wang, C. Dames, and M. Mecartney, J. Am. Ceram. Soc., 96, 2935 (2013).Google Scholar
- (35).J. L. Zeng, F. R. Zhu, S. B. Yu, L. Zhu, Z. Cao, L. X. Sun, G.-R. Deng, W.-P. Yan, and L. Zhang, Sol. Energ. Mater. Sol. C., 105, 174 (2012).Google Scholar
- (36).A. Rai and A. L. Moore, Com. Sci. Technol., 144, 70 (2017).Google Scholar
- (37).L. Riviere, A. Lonjon, E. Dantras, C. Lacabanne, P. Olivier, and N. R. Gleizes, Eur. Polym. J., 85, 115 (2016).Google Scholar
- (38).S. A. H. Pour, B. Pourabbas, and M. S. Hosseini, Mater. Chem. Phys., 143, 830 (2014).Google Scholar
- (39).H. Yuan, Y. Wang, T. Li, P. Ma, S. Zhang, M. Du, M. Chen, W. Dong, and W. Ming, Compos. Sci. Technol., 164, 153 (2018).Google Scholar
- (40).A. Singhal, K. A. Dubey, Y. K. Bhardwaj, D. Jain, S. Choudhury, and A. K. Tyagi, RSC Adv., 3, 20913 (2013).Google Scholar
- (41).N. H. Mohd Hirmizi, M. A. Bakar, W. L. Tan, N. H. H. Abu Bakar, J. Ismail, and C. H. See, J. Nanomater., 2012, 1 (2012).Google Scholar
- (42).S. Y. Yeo, W. L. Tan, M. Abu Bakar, and J. Ismail, Polym. Degrad. Stab., 95, 1299 (2010).Google Scholar
- (43).L. M. Gorghiu, S. Jipa, T. Zaharescu, R. Setnescu, and I. Mihalcea, Polym. Degrad. Stab., 84, 7 (2004).Google Scholar