Advertisement

PVA Hydrogel Functionalization via PET-RAFT Grafting with Glycidyl Methacrylate and Immobilization with 2-Hydroxypropyltrimethyl Ammonium Chloride Chitosan via Ring-Open Reaction

  • Jinsheng ZhouEmail author
  • Yanming Lin
  • Lin Ye
  • Ling Wang
  • Li Zhou
  • Huiyuan Hu
  • Qilong Zhang
  • Hui Yang
  • Zhongkuan LuoEmail author
Article
  • 7 Downloads

Abstract

To solve the biofouling problem of polyvinyl alcohol (PVA) hydrogel as the artificial cornea, glycidyl methacrylate (GMA) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) were grafted on the surface of PVA hydrogel via a new method of photoinduced electron transfer—reversible addition fragmentation chain transfer (PET-RAFT) polymerization and ring-open reaction. Both attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) confirmed that GMA and HACC were successfully grafted on the surface of PVA hydrogel. A series of experiments to test the hydrophilicity of PVA hydrogel showed that it became hydrophobic due to the introduction of hydrophobic groups after grafting with GMA and HACC. In addition, cytotoxicity in vitro of PVA-g-p(GMA-HACC) hydrogel could be considered as not cytotoxicity according to ISO 10993-5: 2009. The anti-fouling property of hydrogel decreased after grafting with GMA due to the hydrophobic surface, while increased after grafting with HACC due to the steric repulsion of p(GMA-HACC) polymer brush. It’s no doubt that PET-RAFT was a feasible and reliable surface modification method which could be used in many biomolecules due to the excellent advantages.

Keywords

polyvinyl alcohol (PVA) hydrogel glycidyl methacrylate (GMA) 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) photoinduced electron transfer—reversible addition fragmentation chain transfer (PET-RAFT) surface modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. Li, X. Cai, D. Wang, S. Chen, J. Yuan, L. Li, and J. Shen, Colloids Surf. B, 110, 327 (2013).CrossRefGoogle Scholar
  2. (2).
    B. Ozcelik, K. K. K. Ho, V. Glattauer, M. Willcox, N. Kumar, and H. Thissen, ACS Biomater. Sci. Eng., 3, 78 (2016).CrossRefGoogle Scholar
  3. (3).
    B. Singh and L. Pal, J. Mech. Behav. Biomed. Mater., 9, 9 (2012).CrossRefGoogle Scholar
  4. (4).
    S. Vijayasekaran, J. H. Fitton, C. R. Hicks, T. V. Chirila, G. J. Crawford, and I. J. Constable, Biomaterials, 19, 2255 (1998).CrossRefGoogle Scholar
  5. (5).
    Z. Q. Gu, J. M. Xiao, and X. H. Zhang, Bio-Med. Mater. Eng., 8, 75 (1998).Google Scholar
  6. (6).
    S. Horiike and S. Matsuzawa, J. Appl. Polym. Sci., 58, 1335 (2010).CrossRefGoogle Scholar
  7. (7).
    J. Wang, C. Gao, Y. Zhang, and Y. Wan, Mater. Sci. Eng. C, 30, 214 (2010).CrossRefGoogle Scholar
  8. (8).
    H. Jiang, Y. Zuo, L. Zhang, J. Li, A. Zhang, Y. Li, and X. Yang, J. Mater. Sci. Mater. Med., 25, 941 (2014).CrossRefGoogle Scholar
  9. (9).
    Y. Hara, T. Matsuura, F. Taketani, M. Tsukamoto, Y. Nawa, M. Saishin, R. Kodama, and A. Yamauchi, Nippon Ganka Gakkai Zasshi, 102, 247 (1998).Google Scholar
  10. (10).
    K. Liu, L. I. Yubao, X. U. Fenglan, Y. I. Zuo, L. I. Zhang, H. Wang, and J. Liao, Mater. Sci. Eng. C, 29, 261 (2009).CrossRefGoogle Scholar
  11. (11).
    A. W. Eckert, D. Gröbeb, and U. Rothe, Biomaterials, 21, 441 (2000).CrossRefGoogle Scholar
  12. (12).
    C. Tyagi, L. K. Tomar, and H. Singh, J. Appl. Polym. Sci., 111, 1381 (2010).CrossRefGoogle Scholar
  13. (13).
    G. Bayramoğlu, S. Akgöl, A. Bulut, A. Denizli, and M. Y. Arıca, Biochem. Eng. J., 14, 117 (2003).CrossRefGoogle Scholar
  14. (14).
    A. Boujemaoui, S. Mazières, E. Malmström, M. Destarac, and A. Carlmark, Polymer, 99, S0032386116305687 (2016).CrossRefGoogle Scholar
  15. (15).
    H. Kitanoa, K. I. Tokuwa, L. Li, S. Iwanaga, M. Nakamura, N. Kanayama, K. Ohno, and Y. Saruwatari, Eur. Polym. J., 48, 1875 (2012).CrossRefGoogle Scholar
  16. (16).
    M. B. And and W. J. Brittain, Macromolecules, 35, 610 (2002).CrossRefGoogle Scholar
  17. (17).
    X. Jiangtao, J. Kenward, A. Amir, S. Sivaprakash, and B. Cyrille, J. Am. Chem. Soc., 136, 5508 (2014).CrossRefGoogle Scholar
  18. (18).
    J. Xu, K. Jung, and C. Boyer, Macromolecules, 47, 4217 (2014).CrossRefGoogle Scholar
  19. (19).
    J. Meng, J. Li, Y. Zhang, and S. Ma, J. Membr. Sci., 455, 405 (2014).CrossRefGoogle Scholar
  20. (20).
    J. Xu, Polym. Chem., 6, 5615 (2015).CrossRefGoogle Scholar
  21. (21).
    N. Corrigan, J. Xu, and C. Boyer, Macromolecules, 49, 3274 (2016).CrossRefGoogle Scholar
  22. (22).
    S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, and V. Balzani, in Photochemistry and Photophysics of Coordination Compounds I, Springer-Verlag, Berlin Heidelberg, 2007, pp 117–214.CrossRefGoogle Scholar
  23. (23).
    J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 40, 102 (2010).CrossRefGoogle Scholar
  24. (24).
    P. Zhou, Y. Xia, L. Jiang, Y. Zhang, C. Qiu, X. Yang, and S. Xu, RSC Adv., 6, 66938 (2016).CrossRefGoogle Scholar
  25. (25).
    H. Wang, Y. Chen, K. Qian, Q. Guo, W. Shu, C. Ping, S. Wei, and Y. Wang, J. Macromol. Sci. A, 54, 1 (2017).CrossRefGoogle Scholar
  26. (26).
    A. Chang, Iran. Polym. J., 24, 161 (2015).CrossRefGoogle Scholar
  27. (27).
    X. U. Xiaofen, W. Ling, S. Guo, L. Lei, and T. Tang, Appl. Surf. Sci., 257, 10520 (2011).CrossRefGoogle Scholar
  28. (28).
    Z. X. Peng, L. Wang, L. Du, S. R. Guo, X. Q. Wang, and T. T. Tang, Carbohydr. Polym., 81, 275 (2010).CrossRefGoogle Scholar
  29. (29).
    L. Hui, D. Yumin, W. Xiaohui, and S. Liping, Int. J. Food Microbiol., 95, 147 (2004).CrossRefGoogle Scholar
  30. (30).
    P. Zhou, X. Yan, W. Jing, L. Chong, Y. Long, T. Wei, G. Shen, and S. Xu, J. Mater. Chem. B, 1, 685 (2013).CrossRefGoogle Scholar
  31. (31).
    S. H. Hyon, W. I. Cha, and Y. Ikada, Polym. Bull., 22, 119 (1989).CrossRefGoogle Scholar
  32. (32).
    Y. Heo, H. Im, S. Yun, and J. Kim, Macromol. Res., 20, 1271 (2012).CrossRefGoogle Scholar
  33. (33).
    M. A. Ruyin, D. Xiong, M. Feng, J. Zhang, and Y. Peng, Mater. Sci. Eng. C, 29, 1979 (2009).CrossRefGoogle Scholar
  34. (34).
    M. C. Li, J. K. Lee, and U. R. Cho, J. Appl. Polym. Sci., 125, 405 (2012).CrossRefGoogle Scholar
  35. (35).
    L. Zhang, J. Zheng, Y. Rong, C. Yang, L. Long, Y. Xu, Y. Chen, J. Wang, and Q. Yao, Med. Chem. Res., 27, 2231 (2018).CrossRefGoogle Scholar
  36. (36).
    S. H. Noh, E. H. Kim, G. D. Han, J. W. Kim, Y. Ito, J. G. Lee, and T. I. Son, Macromol. Res., 25, 1192 (2017).CrossRefGoogle Scholar
  37. (37).
    Z. Xu, J. Liao, H. Tang, and N. Li, J. Membr. Sci., 548, 481 (2017).CrossRefGoogle Scholar
  38. (38).
    S.-A. Riyajan and Y. Sasithornsonti, J. Polym. Environ., 21, 472 (2012).CrossRefGoogle Scholar
  39. (39).
    R. Huang, G. Chen, M. Sun, Y. Hu, and C. Gao, J. Membr. Sci., 286, 237 (2006).CrossRefGoogle Scholar
  40. (40).
    L. Wei, X. Ling, and C. Qin, J. Mater. Sci., 45, 5915 (2010).CrossRefGoogle Scholar
  41. (41).
    X. Xu, Y. Li, F. Wang, L. Lv, J. Liu, M. Li, A. Guo, J. Jiang, Y. Shen, and S. Guo, Int. J. Pharm., 453, 610 (2013).CrossRefGoogle Scholar
  42. (42).
    M. Varga, T. Izak, V. Vretenar, H. Kozak, J. Holovsky, A. Artemenko, M. Hulman, V. Skakalova, S. L. Dong, and A. Kromka, Carbon, 111, 54 (2017).CrossRefGoogle Scholar
  43. (43).
    M. K. Ashtiani, M. Zandi, P. Shokrollahi, M. Ehsani, and H. Baharvand, Polym. Adv. Technol., 29, 1227 (2018).CrossRefGoogle Scholar
  44. (44).
    X. Pan, K. Zhu, G. Ren, N. Islam, J. Warzywoda, and Z. Fan, J. Mater. Chem. A, 2, 12746 (2014).CrossRefGoogle Scholar
  45. (45).
    D. W. Zeng and C. K. Yung, Appl. Surf. Sci., 180, 280 (2001).CrossRefGoogle Scholar
  46. (46).
    M. Outirite, M. Lagrenée, M. Lebrini, M. Traisnel, C. Jama, H. Vezin, and F. Bentiss, Electrochim. Acta, 55, 1670 (2010).CrossRefGoogle Scholar
  47. (47).
    G. Beshkov, D. B. Dimitrov, S. Georgiev, D. Juan-Cheng, P. Petrov, N. Velchev, and V. Krastev, Diamond Relat. Mater., 8, 591 (1999).CrossRefGoogle Scholar
  48. (48).
    Y. N. Singhbabu, P. Kumari, S. Parida, and R. K. Sahu, Carbon, 74, 32 (2014).CrossRefGoogle Scholar
  49. (49).
    J. Zhang, Y. Li, F. Zhang, C. Hu, and Y. Chen, Angew. Chem. Int. Ed., 55, 1872 (2016).CrossRefGoogle Scholar
  50. (50).
    K. Jia and Y. Chen, Chem. Commun., 54, 6105 (2018).CrossRefGoogle Scholar
  51. (51).
    J. Phommalysacklovan, Y. Chu, C. Boyer, and J. Xu, Chem. Commun., 54, 6591 (2018).CrossRefGoogle Scholar
  52. (52).
    C. K. Prier, D. A. Rankic, and D. W. C. Macmillan, Chem. Rev., 113, 5322 (2013).CrossRefGoogle Scholar
  53. (53).
    C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Liu, and S. Perrier, Chem. Rev., 109, 5402 (2009).CrossRefGoogle Scholar
  54. (54).
    S. Perrier, C. Barner-kowollik, J. F. Quinn, P. Vana, and T. P. Davis, Macromolecules, 35, 8300 (2002).CrossRefGoogle Scholar
  55. (55).
    D. J. Enscore, H. B. Hopfenberg, and V. T. Stannett, Polymer, 18, 793 (1977).CrossRefGoogle Scholar
  56. (56).
    Q. Tang, X. Sun, Q. Li, J. Lin, and J. Wu, J. Mater. Sci., 44, 3712 (2009).CrossRefGoogle Scholar
  57. (57).
    G. Liu and J. Song, Polym. Int., 61, 596 (2012).CrossRefGoogle Scholar
  58. (58).
    Z. L. Liu, H. Hu, and R. X. Zhuo, J. Polym. Sci. Part A: Polym. Chem., 42, 4370 (2004).CrossRefGoogle Scholar
  59. (59).
    Geneva, Switzerland, International Organization for Standardization, 2009.Google Scholar
  60. (60).
    S. Lamponi, G. Leone, Consumi, G. Greco, and A. Magnani, J. Biomater. Sci. Polym. Ed., 23, 555 (2012).CrossRefGoogle Scholar
  61. (61).
    S. Höhn, S. Virtanen, and A. R. Boccaccini, Appl. Surf. Sci., 464, 212 (2018).CrossRefGoogle Scholar
  62. (62).
    S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes, J. Colloid Interface Sci., 142, 149 (1991).CrossRefGoogle Scholar
  63. (63).
    S. I. Jeon and J. D. Andrade, J. Colloid Interface Sci., 142, 159 (1991).CrossRefGoogle Scholar
  64. (64).
    Y. He, J. Hower, S. Chen, M. T. Bernards, Y. Chang, and S. Jiang, Langmuir, 24, 10358 (2008).CrossRefGoogle Scholar
  65. (65).
    S. Chen, L. Li, Z. Chao, and Z. Jie, Polymer, 51, 5283 (2010).CrossRefGoogle Scholar
  66. (66).
    J. Yuan, J. Zhang, X. Zang, J. Shen, and S. Lin, Colloids Surf. B, 30, 147 (2003).CrossRefGoogle Scholar
  67. (67).
    H. M. Zhu, L. Bo, L. Li, and S. Jian, Sci. China, Ser. B: Chem., 51, 78 (2008).CrossRefGoogle Scholar
  68. (68).
    Y. Tamada and Y. Ikada, J. Colloid Interface Sci., 155, 334 (1993).CrossRefGoogle Scholar
  69. (69).
    Y. Tamada and Y. Ikada, Polymer, 34, 2208 (1993).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Jinsheng Zhou
    • 1
    Email author
  • Yanming Lin
    • 2
  • Lin Ye
    • 3
    • 4
    • 5
  • Ling Wang
    • 3
    • 4
    • 5
  • Li Zhou
    • 2
  • Huiyuan Hu
    • 2
  • Qilong Zhang
    • 1
  • Hui Yang
    • 1
  • Zhongkuan Luo
    • 1
    • 2
    Email author
  1. 1.School of Material Science and EngineeringZhejiang UniversityHangzhouP. R. China
  2. 2.College of Chemistry and Environmental EngineeringShenzhen UniversityGuangdongP. R. China
  3. 3.Shenzhen Eye HospitalGuangdongP. R. China
  4. 4.Shenzhen Key Laboratory of OphthalmologyGuangdongP. R. China
  5. 5.Shenzhen Ocular Trauma and Stem Cell Differentiation ServiceGuangdongP. R. China

Personalised recommendations